Skip to main content

Subresultants Revisited

Extended Abstract

  • Conference paper
  • First Online:
LATIN 2000: Theoretical Informatics (LATIN 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1776))

Included in the following conference series:

Abstract

The Euclidean Algorithm was first documented by Euclid (320–275 BC). Knuth (1981), p. 318, writes: “We might call it the granddaddy of all algorithms, because it is the oldest nontrivial algorithm that has survived to the present day.” It performs division with remainder repeatedly until the remainder becomes zero.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bézout, É.: Recherches sur le degré des équations résultantes de l’évanouissement des inconnues. Histoire de l’académie royale des sciences Summary 88–91, 288–338 (1764)

    Google Scholar 

  • Biermann, O.: Über die Resultante ganzer Functionen. Monatshefte fuer Mathematik und Physik, II. Jahrgang, 143–146 (1891)

    Google Scholar 

  • Brown, W.S.: On Euclid’s Algorithm and the Computation of Polynomial Greatest Common Divisors. Journal of the ACM 18(4), 478–504 (1971)

    Article  MathSciNet  Google Scholar 

  • Brown, W.S.: The Subresultant PRS Algorithm. ACM Transactions on Mathematical Software 4(3), 237–249 (1978)

    Article  MathSciNet  Google Scholar 

  • Brown, W.S., Traub, J.F.: On Euclid’s Algorithm and the Theory of Subresultants. Journal of the ACM 18(4), 505–514 (1971)

    Article  MathSciNet  Google Scholar 

  • Collins, G.E.: Polynomial remainder sequences and determinants. The American Mathematical Monthly 73, 708–712 (1966)

    Article  MathSciNet  Google Scholar 

  • Collins, G.E.: Subresultants and Reduced Polynomial Remainder Sequences. Journal of the ACM 14(1), 128–142 (1967)

    Article  MathSciNet  Google Scholar 

  • Collins, G.E.: The Calculation of Multivariate Polynomial Resultants. Journal of the ACM 18(4), 515–532 (1971)

    Article  MathSciNet  Google Scholar 

  • Collins, G.E.: Computer algebra of polynomials and rational functions. The American Mathematical Monthly 80, 725–755 (1973)

    Article  MathSciNet  Google Scholar 

  • Cooperman, G., Feisel, S., von, J.: Gcd of many integers. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 310–317. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  • Euler, L.: Démonstration sur le nombre des points où deux lignes des ordres quelconques peuvent se couper. Mémoires de l’Académie des Sciences de Berlin 4, 234–248 (1748), 1750; Eneström 148. Opera Omnia, ser. 1,  26, Orell Füssli, Zürich, 46–59 (1953)

    Google Scholar 

  • von zur Gathen, J.: Parallel algorithms for algebraic problems. SIAM Journal on Computing 13(4), 802–824 (1984)

    Article  MathSciNet  Google Scholar 

  • von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  • Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer Academic Publishers, Dordrecht (1992)

    Book  Google Scholar 

  • Gordan, P.: Vorlesungen über Invariantentheorie. In: Erster Band: Determinanten. B. G. Teubner, Leipzig (1885); Herausgegeben von Georg Kerschensteiner

    Google Scholar 

  • Habicht, W.: Eine Verallgemeinerung des Sturmschen Wurzelzählverfahrens. Commentarii Mathematici Helvetici 21, 99–116 (1948)

    Article  MathSciNet  Google Scholar 

  • Haskell, M.W.: Note on resultants. Bulletin of the New York Mathematical Society 1, 223–224 (1892)

    Article  MathSciNet  Google Scholar 

  • Hungerford, T.W.: Abstract Algebra: An Introduction. Saunders College Publishing, Philadelphia (1990)

    Google Scholar 

  • Jacobi, C.G.J.: De eliminatione variabilis e duabus aequationibus algebraicis. Journal für die Reine und Angewandte Mathematik 15, 101–124 (1836)

    MathSciNet  Google Scholar 

  • Knuth, D.E.: The Art of Computer Programming, 2nd edn. Seminumerical Algorithms. Addison-Wesley, Reading (1981)

    MATH  Google Scholar 

  • Kronecker, L.: Die verschiedenen Sturmschen Reihen und ihre gegenseitigen Beziehungen. Monatsberichte der Königlich Preussischen Akademie der Wissenschaften, Berlin, pp. 117–154 (1873)

    Google Scholar 

  • L. Kronecker, Zur Theorie der Elimination einer Variabeln aus zwei algebraischen Gleichungen. Monatsberichte der K öniglich Preussischen Akademie der Wissenschaften, Berlin, pp. 535–600 (1881); Werke, Zweiter Band, ed. K. Hensel, Leipzig, pp. 113–192 (1897). Reprint by Chelsea Publishing Co., New York, (1968)

    Google Scholar 

  • Lickteig, T., Roy, M.-F.: Cauchy Index Computation. Calcolo 33, 331–357 (1997)

    MathSciNet  Google Scholar 

  • Loos, R.: Generalized Polynomial Remainder Sequences. Computing 4, 115–137 (1982)

    MATH  Google Scholar 

  • Mulders, T.: A note on subresultants and the Lazard/Rioboo/Trager formula in rational function integration. Journal of Symbolic Computation 24(1), 45–50 (1997)

    Article  MathSciNet  Google Scholar 

  • Newton, I.: Arithmetica Universalis, sive de compositione et resolutione arithmetica liber. J. Senex, London (1707); English translation as Universal Arithmetick: or, A Treatise on Arithmetical composition and Resolution, translated by the late Mr. Raphson and revised and corrected by Mr. Cunn, London (1728). Reprinted in: Whiteside, D. T., The mathematical works of Isaac Newton, Johnson Reprint Co, New York, p. 4 (1967)

    Google Scholar 

  • Reischert, D.: Asymptotically Fast Computation of Subresultants. In: Maui, H.I., Küchlin, W.W. (eds.) Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation ISSAC 1997, pp. 233–240. ACM Press, New York (1997)

    MATH  Google Scholar 

  • Strassen, V.: The computational complexity of continued fractions. SIAM Journal on Computing 12(1), 1–27 (1983)

    Article  MathSciNet  Google Scholar 

  • Sturm, C.: Mémoire sur la résolution des équations numériques. Mémoires présentés par divers savants à l’Académie des Sciences de l’Institut de France 6, 273–318 (1835)

    Google Scholar 

  • Sylvester, J.J.: A method of determining by mere inspection the derivatives from two equations of any degree. Philosophical Magazine 16, 132–135 (1840); Mathematical Papers 1, pp. 54–57. Chelsea Publishing Co., New York (1973)

    Google Scholar 

  • Zippel, R.: Effective polynomial computation. Kluwer Academic Publishers, Dordrecht (1993)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

von zur Gathen, J., Lücking, T. (2000). Subresultants Revisited. In: Gonnet, G.H., Viola, A. (eds) LATIN 2000: Theoretical Informatics. LATIN 2000. Lecture Notes in Computer Science, vol 1776. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10719839_33

Download citation

  • DOI: https://doi.org/10.1007/10719839_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67306-4

  • Online ISBN: 978-3-540-46415-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics