Skip to main content

A Note on Shanks’s Chains of Primes

  • Conference paper
Algorithmic Number Theory (ANTS 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1838))

Included in the following conference series:

Abstract

For integers a and b we define the Shanks chain p 1, p 2,..., p k of length k to be a sequence of k primes such that \(p_{i+1} = ap_{i}^{2} -- b\) for i = 1,2,..., k − 1. While for Cunningham chains it is conjectured that arbitrarily long chains exist, this is, in general, not true for Shanks chains. In fact, with s = ab we show that for all but 56 values of s ≤1000 any corresponding Shanks chain must have bounded length. For this, we study certain properties of functional digraphs of quadratic functions over prime fields, both in theory and practice. We give efficient algorithms to investigate these properties and present a selection of our experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bach, E.: Toward a theory of Pollard’s rho method. Information and Computation 90, 139–155 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bach, E., Shallit, J.O.: Algorithmic number theory, vol. 1. MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  3. Barrucand, P., Cohn, H.: A note on primes of type x2 + 32y2, class number and residuacity. J. Reine Angew. Math. 238, 67–70 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bateman, P.T., Horn, R.: Primes represented by irreducible polynomials in one variable. In: Proc. Sympos. Pure Math., Providence, AMS, vol. VIII, pp. 119–132(1965)

    Google Scholar 

  5. Dickson, E.: History of the theory of numbers, vol. 1. Chelsea, New York (1952)

    Google Scholar 

  6. Escott, E.B.: Cubic congruences with three real roots. Annals of Math. 11(2), 86–92 (1909–1910)

    Article  MathSciNet  Google Scholar 

  7. Flajolet, P., Odlyzko, A.M.: Random mapping statistics. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 329–354. Springer, Heidelberg (1990)

    Google Scholar 

  8. Forbes, T.: Prime clusters and Cunningham chains. Math. Comp. 68(228), 1739–1747 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Guy, R.K.: Unsolved problems in number theory, 2nd edn. Springer, Berlin (1994)

    MATH  Google Scholar 

  10. Hardy, G.H., Littlewood, J.E.: Some problems of partitio numerorum. III. On the expression of a number as a sum of primes. Acta Math. 44, 1–70 (1923)

    Article  MathSciNet  MATH  Google Scholar 

  11. LiDIA Group, Technische Universität Darmstadt, Darmstadt, Germany, LiDIA - a library for computational number theory, version 1.3 (1997)

    Google Scholar 

  12. Morton, P.: Arithmetic properties of periodic points of quadratic maps. Acta Arithmetica 62, 343–372 (1992)

    MATH  MathSciNet  Google Scholar 

  13. Morton, P.: Arithmetic properties of periodic points of quadratic maps II. Acta Arithmetica 87, 89–102 (1998)

    MATH  MathSciNet  Google Scholar 

  14. Narkiewicz, W.: Polynomial cycles in algebraic number fields. Colloq. Math. 58, 151–155 (1989)

    MATH  MathSciNet  Google Scholar 

  15. Pollard, J.M.: A Monte Carlo method for factorization. BIT 15(3), 331–335 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  16. Schinzel, A., Sierpiński, W.: Sur certaines hypothèses concernant les nombres premiers. Acta Arith. 4, 185–208 (1958)

    MATH  Google Scholar 

  17. Schinzel, A., Sierpiński, W.: Remarks on the paper “Sur certaines hypothèses concernant les nombres premiers”. Acta Arith. 7, 1–8 (1961)

    MATH  MathSciNet  Google Scholar 

  18. Shanks, D.: Letter to D.H. and Emma Lehmer, June 10 (1969)

    Google Scholar 

  19. Shanks, D.: Supplemental data and remarks concerning a Hardy-Littlewood conjec ture. Math. Comp. 17, 188–193 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  20. Stein, A., Williams, H.: An improved method of computing the regulator of a real quadratic function field. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 607–620. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  21. Williams, H.C., Holte, R.: Computation of the solution x3 + dy3 = 1. Math. Comp. 31, 778–785 (1977)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Teske, E., Williams, H.C. (2000). A Note on Shanks’s Chains of Primes. In: Bosma, W. (eds) Algorithmic Number Theory. ANTS 2000. Lecture Notes in Computer Science, vol 1838. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10722028_38

Download citation

  • DOI: https://doi.org/10.1007/10722028_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67695-9

  • Online ISBN: 978-3-540-44994-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics