Skip to main content

Part of the book series: Advances in Biochemical Engineering Biotechnology ((ABE,volume 128))

Abstract

China initiated its acetone–butanol–ethanol (ABE) industry in the 1950s; it peaked in the 1980s, and ended at the end of the last century owing to the development of more competitive petrochemical pathways. However, driven by the high price of crude oil and environmental concerns raised by the over-consumption of petrochemical products, biofuels and bio-based chemicals including butanol have garnered global attention again. Currently, butanol produced from ABE fermentation is mainly used as an industrial solvent or a platform chemical for several bulk derivatives, and is also believed to be a potential biofuel. A number of plants have been built or rebuilt in recent years in China for butanol production with the ABE process. Chinese researchers also show great interest in the improvement of the production strains and corresponding processes. They have applied conventional mutagenesis methods to improve butanol-producing strains such as the Clostridium acetobutylicum mutant strains EA2018 (butanol ratio of 70%) and Rh8 (butanol tolerance of 19 g/L). The omics technologies, such as genome sequencing, proteomic and transcriptomic analysis, have been adapted to elucidate the characteristics of different butanol-producing bacteria. Based on the group II intron method, the genetic manipulation system of C. acetobutylicum was greatly improved, and some successful engineering strains were developed. In addition, research in China also covers the downstream processes. This article reviews up-to-date progress on biobutanol production in China.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alsaker KV, Papoutsakis ET (2005) Transcriptional program of early sporulation and stationary-phase events in Clostridium acetobutylicum. J Bacteriol 187:7103–7118

    Article  CAS  Google Scholar 

  2. Alsaker KV, Spitzer TR, Papoutsakis ET (2004) Transcriptional analysis of spo0A overexpression in Clostridium acetobutylicum and its effect on the cell’s response to butanol stress. J Bacteriol 186:1959–1971

    Article  CAS  Google Scholar 

  3. Bao G, Wang R, Zhu Y et al (2011) Complete genome sequence of Clostridium acetobutylicum DSM 1731, a solvent producing strain with multi-replicon genome architecture. J Bacteriol:doi:10.1128/JB.05596-11

  4. Bowles LK, Ellefson WL (1985) Effects of butanol on Clostridium acetobutylicum. Appl Environ Microbiol 50(5):1165–1170

    CAS  Google Scholar 

  5. Chen L, Xin C, Deng P et al (2010) Butanol production from hydrolysate of Jerusalem artichoke juice by Clostridium acetobutylicum L7. Chin J Biotechnol 26(7):991–996

    Google Scholar 

  6. Chiao J, Cheng Y, Shen Y et al (1960) Studies on the continuous acetone-butanol fermentation. Acta Microbiol Sin 10:137–148

    Google Scholar 

  7. Chiao J, Sun Z (2007) History of the acetone-butanol-ethanol fermentation industry in China: development of continuous production technology. J Mol Microbiol Biotechnol 13:12–14

    Article  CAS  Google Scholar 

  8. Desai R, Papoutsakis E (1999) Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum. Appl Environ Microbiol 65:936–945

    CAS  Google Scholar 

  9. Dong H, Tao W, Zhu L et al (2011) CAC2634-disrupted mutant of Clostridium acetobutylicum can be electrotransformed in air. Lett Appl Microbiol 53(3):379-82.doi:10.1111/j.1472-765X.2011.03111.x

    Google Scholar 

  10. Dong H, Zhang Y, Dai Z et al (2010) Engineering Clostridium strain to accept unmethylated DNA. PLoS One 5(2):e9038

    Article  Google Scholar 

  11. Dyr J, Munk V (1954) Biosynthesis of riboflavin by Clostridium acetobutylicum. Chekhoslovatskaia Biol 3(1):23–29

    CAS  Google Scholar 

  12. Fan J, Feng W, Di S et al (2010) Production of butanol from sugar beet molasses by fed-batch fermentation. Chin J Bioprocess Eng 8:6–9

    CAS  Google Scholar 

  13. Green EM (2011) Fermentative production of butanol–the industrial perspective. Curr Opin Biotech 22:337–343

    Google Scholar 

  14. Green EM, Boynton ZL, Harris LM et al (1996) Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 142:2079–2086

    Article  CAS  Google Scholar 

  15. Gu Y, Ding Y, Ren C et al (2010) Reconstruction of xylose utilization pathway and regulons in Firmicutes. BMC Genomics 11(1):255

    Article  Google Scholar 

  16. Gu Y, Li J, Zhang L et al (2009) Improvement of xylose utilization in Clostridium acetobutylicum via expression of the talA gene encoding transaldolase from Escherichia coli. J Biotechnol 143(4):284–287

    Article  CAS  Google Scholar 

  17. Harris LM, Welker NE, Papoutsakis ET (2002) Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824. J Bacteriol 184(13):3586–3597

    Article  CAS  Google Scholar 

  18. Heap JT and Minton NP (2009) Methods. PCT/GB2009/000380

    Google Scholar 

  19. Heap JT, Pennington OJ, Cartman ST et al (2007) The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods 70(3):452–464

    Article  CAS  Google Scholar 

  20. Ho NW, Chen Z, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859

    CAS  Google Scholar 

  21. Hu C, Du Y, Yang Y (2007) Preliminary study on coupling between biodiesels and acetone-butanol fermentation. Chin J Process Eng 5(1):27–33

    CAS  Google Scholar 

  22. Hu S, Zheng H, Gu Y et al (2011) Comparative genomic and transcriptomic analysis revealed genetic characteristics related to solvent formation and xylose utilization in Clostridium acetobutylicum EA 2018. BMC Genomics 12:1471–2164

    Google Scholar 

  23. Jia K, Zhu Y, Zhang Y et al (2011) Group II intron-anchored gene deletion in Clostridium. PLoS One 6(1):e16693

    Article  CAS  Google Scholar 

  24. Jiang Y, Xu C, Dong F et al (2009) Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metab Eng 11:284–291

    Article  CAS  Google Scholar 

  25. Jones DT, Keis S (1995) Origins and relationships of industrial solvent-producing clostridial strains. FEMS Microbiol Rev 17(3):223–232

    Article  CAS  Google Scholar 

  26. Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50(4):484–524

    CAS  Google Scholar 

  27. Karberg M, Guo H, Zhong J et al (2001) Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria. Nat Biotechnol 19(12):1162–1167

    Article  CAS  Google Scholar 

  28. Lütke-Eversloh T, Bahl H (2011) Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol 22:634–647

    Google Scholar 

  29. Lee SY, Park JH, Jang SH et al (2008) Fermentative butanol production by clostridia. Biotechnol Bioeng 101(2):209–228

    Article  CAS  Google Scholar 

  30. Li D, Chen H (2007) Fermentation of acetone and butanol coupled with enzymatic hydrolysis of steam exploded cornstalk stover in a membrane reactor. Chin J Process Eng 7(6):1212–1216

    CAS  Google Scholar 

  31. Liu S, Qureshi N (2009) Proteome analysis and comparison of Clostridium acetobutylicum ATCC 824 and Spo0A strain variants. New Biotechnol 26:117–121

    Article  CAS  Google Scholar 

  32. Liu Z, Ying Y, Li F et al (2010) Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. J Ind Microbiol Biotechnol 37(5):495–501

    Article  CAS  Google Scholar 

  33. Luo J, Yi S, Su Y et al (2010) Separation and concentration of butanol from acetone-butanol-ethanol mixed solution by pervaporation. Chem Eng 38(2):43–46

    CAS  Google Scholar 

  34. Mao S, Luo Y, Bao G et al (2011) Comparative analysis on the membrane proteome of Clostridium acetobutylicum wild type strain and its butanol-tolerant mutant. Mol BioSyst 7:1660–1677

    Article  CAS  Google Scholar 

  35. Mermelstein LD, Welker NE, Bennett GN et al (1992) Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824. Biotechnology (NY) 10(2):190–195

    Article  CAS  Google Scholar 

  36. Mills DA, Manias DA, McKay LL et al (1997) Homing of a group II intron from Lactococcus lactis subsp. lactis ML3. J Bacteriol 179(19):6107

    CAS  Google Scholar 

  37. Mitchell WJ (1998) Physiology of carbohydrate to solvent conversion by clostridia. Adv Microb Physiol 39:31–130

    Article  CAS  Google Scholar 

  38. Ni Y, Sun Z (2009) Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China. Appl Microbiol Biotechnol 83(3):415–423

    Article  CAS  Google Scholar 

  39. Nolling J, Breton G, Omelchenko M et al (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823–4838

    Article  CAS  Google Scholar 

  40. Ounine K, Petitdemange H, Raval G et al (1985) Regulation and butanol inhibition of D-xylose and d-glucose uptake in Clostridium acetobutylicum. Appl Environ Microbiol 49:874–878

    CAS  Google Scholar 

  41. Qureshi N, Ezeji TC, Ebener J et al (2008) Butanol production by Clostridium beijerinckii. Part I: Use of acid and enzyme hydrolyzed corn fiber. Bioresour Technol 99(13):5915–5922

    Article  CAS  Google Scholar 

  42. Qureshi N, Saha BC, Cotta MA (2007) Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosyst Eng 30(6):419–427

    Article  CAS  Google Scholar 

  43. Ren C, Gu Y, Hu S et al (2010) Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum. Metab Eng 12:446–454

    Article  CAS  Google Scholar 

  44. Rodriguez SA, Davis G, Klose KE (2009) Targeted gene disruption in Francisella tularensis by group II introns. Methods 49(3):270–274

    Article  CAS  Google Scholar 

  45. Shao L, Hu S, Yang Y et al (2007) Targeted gene disruption by use of a group II intron (targetron) vector in Clostridium acetobutylicum. Cell Res 17:963–965

    Article  CAS  Google Scholar 

  46. Soucaille P, Figge R, Croux C (2008) Process for chromosomal integration and DNA sequence replacement in clostridia. PCT/EP2006/066997

    Google Scholar 

  47. Tomas CA, Beamish J, Papoutsakis ET (2004) Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum. J Bacteriol 186(7):2006–2018

    Article  CAS  Google Scholar 

  48. Tummala SB, Welker NE, Papoutsakis ET (2003) Design of antisense RNA constructs for downregulation of the acetone formation pathway of Clostridium acetobutylicum. J Bacteriol 185(6):1923–1934

    Article  CAS  Google Scholar 

  49. Vollherbst-Schneck K, Sands J, Montenecourt B (1984) Effect of butanol on lipid composition and fluidity of Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 47(1):193–194

    CAS  Google Scholar 

  50. Wang S, Zhang Y, Dong H et al (2011) Formic acid triggers the “acid crash” of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. Appl Environ Microbiol 77(5):1674–1680

    Article  CAS  Google Scholar 

  51. Yang X, Tsai GJ, Tsao GT (1994) Enhancement of in situ adsorption on the acetone-butanol fermentation by Clostridium acetobutylicum. Sep Tectmol 4(2):81–92

    Article  CAS  Google Scholar 

  52. Yang X, Tsao GT (1995) Enhanced acetone-butanol fermentation using repeated fed-batch operation coupled with cell recycle by membrane and simultaneous removal of inhibitory products by adsorption. Biotechnol Bioeng 47:444–450

    Article  CAS  Google Scholar 

  53. Zhang Y, Chen J, Yang Y et al (1996) Breeding high-ratio butanol strains of Clostridium acetobutylicum and application to industrial production. Indust Microbiol 26:1–6

    CAS  Google Scholar 

  54. Zhang Y, Chen J, Yang Y et al (1996) Breeding of high-ratio butanol strains of Clostridicum acetobutylicum and application to industrial production. Ind Microbiol 26(4):1–6

    CAS  Google Scholar 

  55. Zhang Y, Zhu Y, Li Y (2009) The importance of engineering physiological functionality into microbes. Trends Biotechnol 27(12):664–672

    Article  Google Scholar 

  56. Zhou H, Su Y, Yi S et al (2010) Effect of acetone and ethanol on pervaporation separation of butanol. CIESC J 61(5):1143–1150

    CAS  Google Scholar 

  57. Zhu L, Dong H, Zhang Y et al (2011) Engineering the robustness of Clostridium acetobutylicum by introducing glutathione biosynthetic capability. Metab Eng 13:426–434

    Article  CAS  Google Scholar 

  58. Zverlov VV, Berezina O, Velikodvorskaya GA et al (2006) Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery. Appl Microbiol Biotechnol Bioeng 71:587–597

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dong, H. et al. (2011). Biobutanol. In: Bai, FW., Liu, CG., Huang, H., Tsao, G. (eds) Biotechnology in China III: Biofuels and Bioenergy. Advances in Biochemical Engineering Biotechnology, vol 128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2011_128

Download citation

Publish with us

Policies and ethics