Skip to main content

Biofilm Architecture

  • Chapter
  • First Online:
Productive Biofilms

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 146))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wimpenny JWT (2003) Togetherness—not just a biofilm thing. In: McBain A, Allison D, Brading M, Rickard AH, Verran J, Walker J (eds) Biofilm communities: order from chaos? BioLine, Cardiff, pp 319–340

    Google Scholar 

  2. Marsh PD (2003) Plaque as a biofilm: pharmacological principles of drug delivery and action in the sub- and supragingival environment. Oral Dis 9:16–22

    Article  Google Scholar 

  3. Francolini I, Donelli G (2010) Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol Med Microbiol 59:227–238

    CAS  Google Scholar 

  4. Fayard EH (2008) Case studies: plant performance improvements through the use of innovative condenser cleaning technology and leak detection inspection. Proceedings of the ASME Power Conference 2008, New York

    Google Scholar 

  5. Huq A, Whitehouse CA, Grim CJ, Alam M, Colwell RR (2008) Biofilms in water, its role and impact in human disease transmission. Curr Opin Biotechnol 19:244–247

    Article  CAS  Google Scholar 

  6. Winkler M (1981) Nitrogen and phosphor removal. In: Biological treatment of wastewater, Ellis Horwood Ltd, Chichester, pp 226–234

    Google Scholar 

  7. Junter GA, Jouenne T (2004) Immobilized viable microbial cells: from the process to the proteome em leader or the cart before the horse. Biotechnol Adv 22:633–658

    Article  CAS  Google Scholar 

  8. Boone DR, Whitman WB, Rouviere P (1993) Diversity and taxonomy of methanogens, In: Ferry JG (ed) Methanogenesis, Chapman & Hall, London, p 35

    Google Scholar 

  9. Doelle HW (1975) Anaerobic respiration. In: Bacterial metabolism, 2nd edn. Academic Press, London, pp 157–158

    Google Scholar 

  10. Qureshi N, Annous BA, Ezeji TE, Karcher P, Maddox IS (2005) Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microb Cell Fact 4:24. doi: 10.1186/1475-2859-4-24

    Google Scholar 

  11. Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122

    Article  CAS  Google Scholar 

  12. Rosche B, Li XZ, Hauer B, Schmid A, Buehler K (2009) Microbial biofilms: a concept for industrial catalysis? Trends Biotechnol 27:636–643

    Article  CAS  Google Scholar 

  13. Shong J, Jimenez Diaz MR, Collins CH (2012) Towards synthetic microbial consortia for bioprocessing. Curr Opin Biotechnol 23:798–802

    Article  CAS  Google Scholar 

  14. Halan B, Buehler K, Schmid A (2012) Biofilms as living catalysts in continuous chemical syntheses. Trends Biotechnol 30:453–465

    Article  CAS  Google Scholar 

  15. Beyenal H, Lewandowski Z, Harkin G (2004) Quantifying biofilm structure: facts and fiction. Biofouling 20:1–23

    Article  CAS  Google Scholar 

  16. Shrout JD, Tolker-Nielsen T, Givskov M, Parsek MR (2011) The contribution of cell–cell signaling and motility to bacterial biofilm formation. MRS Bulletin 36:367–373

    Article  CAS  Google Scholar 

  17. Bridier A, Dubois-Brisonnet F, Boubetra A, Thomas V, Briandet R (2010) The biofilm architecture of sixty opportunistic pathogens deciphered using a high throughput CLSM Method. J Microbiol Meth 82:64–70

    Article  CAS  Google Scholar 

  18. Halan B, Schmid A, Buehler K (2011) Real-time solvent tolerance analysis of Pseudomonas sp strain LB120 delta C catalytic biofilms. Appl Environ Microb 77:1563–1571

    Article  CAS  Google Scholar 

  19. Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48:1511–1524

    Article  CAS  Google Scholar 

  20. Shapiro JA (1998) Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol 52:81–104

    Article  CAS  Google Scholar 

  21. O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    Article  Google Scholar 

  22. Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nature Rev Microbiol 6:199–210

    Article  CAS  Google Scholar 

  23. Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Ann Rev Microbiol 56:187–209

    Article  CAS  Google Scholar 

  24. Hall-Stoodley L, Stoodley P (2002) Developmental regulation of microbial biofilms. Curr Opin Biotechnol 13:228–233

    Article  CAS  Google Scholar 

  25. Asally M, Kittisopikul M, Rue P, Du Y, Hu Z, Cagatay T, Robinson AB, Lu H, Garcia-Ojalvo J, Suel GM (2012) Localized cell death focuses mechanical forces during 3D patterning in a biofilm. Proc Natl Acad Sci USA 109:1–6

    Google Scholar 

  26. Rudge JT, Steiner PJ, Phillips A, Haselhof J (2012) Computational modeling of synthetic microbial biofilms. ACS Synth Biol 1:345–352

    Article  CAS  Google Scholar 

  27. Markx GH, Andrews JS, Mason VP (2004) Towards microbial tissue engineering? Trends Biotechnol 22:417–422

    Article  CAS  Google Scholar 

  28. Matsushita M, Fukijama H (1990) Diffusion-limited growth in bacterial colony formation. Physica 168:498–506

    Article  CAS  Google Scholar 

  29. Stewart PS (2003) Diffusion in biofilms. J Bacteriol 185:1485–1491

    Article  CAS  Google Scholar 

  30. Sauer K, Camper A, Ehrlich G, Costerton J, Davies D (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154

    Article  CAS  Google Scholar 

  31. Kreft JU (2003) Cooperation and competition in biofilms: an evolutionary perspective. In: McBain A, Allison D, Brading M, Rickard AH, Verran J, Walker J (eds) Biofilm communities: order from the chaos?. BioLine, Cardiff, pp 371–380

    Google Scholar 

  32. Xavier JB (2011) Social interaction in synthetic and natural microbial communities. Mol Sys Biol 7:483

    Article  Google Scholar 

  33. Ruiz LM, Valenzuela S, Castro M, Gonzalez A, Frezza M, Soulere L, Rohwerder T, Queneau Y, Doutheau A, Sand W, Jerez CA, Guiliani N (2008) AHL communication is a widespread phenomenon in biomining bacteria and seems to be involved in mineral-adhesion efficiency. Hydrometallurgy 94:133–137

    Article  CAS  Google Scholar 

  34. Connell JL, Wessel AK, Parsek MR, Ellington AD, Whiteley M, Shear JB (2010) Probing prokaryotic social behaviors with bacterial “lobster traps”. MBio 1:1–8

    Article  Google Scholar 

  35. Mason VP, Markx GH, Thompson IP, Andrews JS, Manefield M (2005) Colonial architecture in mixed species assemblages affects AHL mediated gene expression. FEMS Microbiol Lett 244:121–127

    Article  CAS  Google Scholar 

  36. Schuster M, Lostroh CP, Ogi T, Greenber EP (2003) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079

    Article  CAS  Google Scholar 

  37. Decho AW, Norman RS, Visscher PT (2010) Quorum sensing in natural environments: emerging views from microbial mats. Trends Microbiol 18:73–80

    Article  CAS  Google Scholar 

  38. Platt TG, Fuqua C (2010) What’s in a name? The semantics of quorum sensing. Trends Microbiol 18:383–387

    Article  CAS  Google Scholar 

  39. Sanchez Z, Tani A, Suzuki N, Kariyama R, Kuman H, Kimbara K (2012) Assessment of change in biofilm architecture by nutrient concentration using a multichannel microdevice flow system. J Biosci Bioeng doi:10.1016/j.jbiosc.2012.09.018

    Google Scholar 

  40. Bester E, Kroukamp O, Hausner M, Edwards EA, Wolfaardt GM (2010) Biofilm form and function: carbon availability affects biofilm architecture, metabolic activity and planktonic cell yield. J Appl Microbiol 110:387–398

    Article  Google Scholar 

  41. Zhao C, Burchardt M, Brinkhoff T, Beardsley C, Simon M, Wittstock G (2010) Microfabrication of patterns of adherent marine bacterium Phaeobacter inhibens using soft lithography and scanning probe lithography. Langmuir 26:8641–8647

    Article  CAS  Google Scholar 

  42. Stoodley P, Boyle JD, DeBeer D, Lappin-Scott HM (1999) Evolving perspectives of biofilm structure. Biofouling 14:75–90

    Article  Google Scholar 

  43. Bridier A, Le Coq D, Dubois-Brissonet F, Thomas V, Aymerich S, Briandet R (2011) The spatial architecture of Bacillus subtilis biofilms deciphered using a surface associated model and in situ imaging. PLoS One 6:e1677

    Article  Google Scholar 

  44. Kwok WK, Picioreanu C, Ong SL, van Loosdrecht MCM, Ng WJ, Heijnen JJ (1998) Influence of biomass production and detachment forces on biofilm structures in a biofilm airlift suspension reactor. Biotechnol Bioeng 58:400–407

    Article  CAS  Google Scholar 

  45. Kirisits MJ, Margolis JJ, Purevdorj-Gage BL, Vaughan B, Chopp DL, Stoodley P, Parsek MR (2007) Influence of the hydrodynamic environment on quorum sensing in Pseudomonas aeruginosa biofilms. J Bacteriol 189:8357–8360

    Article  CAS  Google Scholar 

  46. Mah TFC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  CAS  Google Scholar 

  47. Lewis K (2008) Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol 322:107–131

    CAS  Google Scholar 

  48. Stewart PS, Roe F, Rayner J, Eldins GJ, Lewandowski Z, Ochsner AU, Hassett JD (2000) Effect of catalase on hydrogen peroxide penetration into Pseudomonas aeruginosa biofilms. Appl Environ Microb 66:836–838

    Article  CAS  Google Scholar 

  49. Field JA, Stams AJM, Kato M, Schraa G (1995) Enhanced biodegradation of aromatic pollutants in cocultures of anaerobic and aerobic bacterial consortia. Antonie van Leeuwenhoek 67:47–77

    Article  CAS  Google Scholar 

  50. Kim HJ, Du W, Ismagilov RF (2011) Complex function by design using spatially pre-structured synthetic microbial communities: degradation of pentachlorophenol in the presence of Hg(II). Integr Biol 3:126–133

    Article  CAS  Google Scholar 

  51. Lanthier M, Taratkovsky B, Villemur R, DeLuca G, Guiot SR (2002) Microstructure of anaerobic granules bioaugmented with Desulfitobacterium frappieri PCP-1. Appl Environ Microb 68:4035–4043

    Article  CAS  Google Scholar 

  52. Cao B, Majors PD, Ahmed B, Renslow RS, Silvia CP, Shi L, Kjelleberg S, Fredrickkson JK, Beyenal H (2012) Biofilm shows spatially stratified metabolic responses to contaminant exposure. Environ Microbiol 14:2901–2910

    Article  CAS  Google Scholar 

  53. Brune KD, Bayer TS (2012) Engineering microbial consortia to enhance biomining and bioremediation. Front Microbiol 3:203

    Article  Google Scholar 

  54. Zuroff TR, Curtis WR (2012) Developing symbiotic consortia for lignocellulosic biofuel production. Appl Microbiol Biotechnol 93:1423–1435

    Article  CAS  Google Scholar 

  55. Gonzalez-Gil G, Lens PNL, van Aelst A, van As H, Versprille AI, Lettinga G (2001) Cluster structure of anaerobic aggregates of an expanded granular sludge bed reactor. Appl Environ Microb 67:3683–3692

    Article  CAS  Google Scholar 

  56. Brenner K, Arnold FH (2011) Self-organization, layered structure, and aggregation enhance persistence of a synthetic biofilm consortium. PLoS One 6:e16791

    Article  CAS  Google Scholar 

  57. Hansen SK, Rainey PB, Haagensen JAJ, Molin S (2007) Evolution of species interactions in a biofilm community. Nature 445:533–536. doi: 10.1038/nature05514

    Google Scholar 

  58. McLeod FA, Guiot SR, Costerton JW (1990) Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor. Appl Environ Microb 56:1598–1607

    Google Scholar 

  59. Woznica A, Karcz J, Nowak A, Gmur A, Bernas T (2010) Spatial architecture of nitrifying bacteria biofilm immobilized on polyurethane foam in an automatic biodetector for water toxicity. Microsc Microanal 16:550–560

    Article  CAS  Google Scholar 

  60. Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR (2010) Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330:1413–1415

    Article  CAS  Google Scholar 

  61. Tamsir A, Tabor JJ, Voigt CA (2011) Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’. Nature 469:212–215

    Article  CAS  Google Scholar 

  62. Lakshmanan V, Kumar AS, Bais HP (2012) The ecological significance of plant-associated biofilms. In: Lear G, Lewis GD (eds) Microbial biofilms: Current research and applications. Caister Academic Press, Portland

    Google Scholar 

  63. Zhu K, Kaprelyants AS, Salina EG, Schuler M, Markx GH (2010) Construction by dielectrophoresis of microbial aggregates for the study of bacterial cell dormancy. Biomicrofluidics 4:022810-1–022810-13

    Google Scholar 

  64. Foster KR, Bell T (2012) Competition, not cooperation, dominates interactions among culturable microbial species. Curr Biol 22:1845–1850

    Article  CAS  Google Scholar 

  65. Brenner K, You L, Arnold FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26:483–489

    Article  CAS  Google Scholar 

  66. Chuang JS (2012) Engineering multicellular traits in synthetic microbial populations. Curr Opin Chem Biol 16:370–378

    Article  CAS  Google Scholar 

  67. Agapakis CM, Boyle PM, Silver PA (2012) Natural strategies for the spatial optimization of metabolism in synthetic biology. Nat Chem Biol 8:527–535

    Article  CAS  Google Scholar 

  68. Wood TK, Hong SH, Ma Q (2011) Engineering biofilm formation and dispersal. Trends Biotechnol 29:87–94

    Article  CAS  Google Scholar 

  69. Stubblefield BA, Howery KE, Islam BN, Santiago AJ, Cardenas WE, Gilbert ES (2010) Constructing multispecies biofilms with defined compositions by sequential deposition of bacteria. Appl Microbiol Biotechnol 86:1941–1946

    Article  CAS  Google Scholar 

  70. Flickinger MC, Schottel JL, Bond DR, Aksan A, Scriven LE (2007) Painting and printing living bacteria: engineering nanoporous biocatalytic coatings to preserve microbial viability and intensify reactivity. Biotechnol Prog 23:2–17

    Article  CAS  Google Scholar 

  71. Tsoligkas AN, Bowen J, Winn M, Goss RJM, Overton TW, Simmons MJ (2012) Characterisation of spin coated engineered Escherichia coli biofilms using atomic force microscopy. Coll Surf B: Biointerfaces 89:152–160

    Article  CAS  Google Scholar 

  72. Elad T, Lee JH, Gu MB, Belkin S (2010) Microbial cell arrays. Adv Biochem Eng Biotechnol 117:85–108

    CAS  Google Scholar 

  73. Albrecht DR, Liu Tsang V, Sah RL, Bhatia SN (2005) Photo-and electropatterning of live cellular arrays within hydrogels. Lab Chip 5:111–118

    Article  CAS  Google Scholar 

  74. Choi WS, Ha D, Park S, Kim T (2010) Synthetic multicellular cell-to-cell communication in inkjet printed bacterial cell systems. Biomaterials 32:2500–2507

    Article  Google Scholar 

  75. Xu T, Petridou S, Lee EH, Roth EA, Vyavahare NR, Hickman JJ, Boland T (2004) Construction of high-density bacterial colony arrays and patterns by the ink-jet method. Biotechnol Bioeng 85:29–33

    Article  CAS  Google Scholar 

  76. Tan W, Desai TA (2004) Layer-by-layer microfluidics for biomimetic three-dimensional structures. Biomaterials 25:1355–1364

    Article  CAS  Google Scholar 

  77. Yaguchi T, Lee S, Choi WS, Kim D, Kim T, Mitchell RJ, Takayama S (2010) Micropatterning bacterial suspensions using aqueous two phase systems. Analyst 135:2848–2852

    Article  CAS  Google Scholar 

  78. Wiklund M, Onfelt B (2012) Ultrasonic manipulation of single cells. Methods in Molecular Biology 853:177–196

    Article  CAS  Google Scholar 

  79. Spengler JF, Jekel M, Christensen KT, Adrian RJ, Hawkes JJ, Coakley WT (2000) Observation of yeast cell movement and aggregation in a small-scale MHz-ultrasonic standing wave field. Bioseparation 9:329–341

    Article  CAS  Google Scholar 

  80. Evander M, Nilsson J (2012) Acoustofluidics 20: Applications in acoustic trapping. Lab Chip 12:4667–4676

    Article  CAS  Google Scholar 

  81. Wiklund M, Radel S, Hawkes JJ (2013) Acoustofluidics 21: ultrasound-enhanced immunoassays and particle sensors. Lab Chip 13:25–39

    Article  CAS  Google Scholar 

  82. Haruff HM, Munakata-Marr J, Marr DWM (2003) Directed bacterial surface attachment via optical trapping. Coll Surf B: Biointerfaces 27:189–195

    Article  CAS  Google Scholar 

  83. Poortinga AT, Bos R, Busscher HJ (2000) Controlled electrophoretic deposition of bacteria to surfaces for the design of biofilms. Biotechnol Bioeng 67:117–120

    Article  CAS  Google Scholar 

  84. Alp B, Stephens GM, Markx GH (2002) Formation of artificial, structured microbial consortia (ASMC) by dielectrophoresis. Enz Microb Technol 31:35–43

    Article  CAS  Google Scholar 

  85. Markx GH, Alp B, McGilchrist A (2002) Electro-orientation of Schizosaccharomyces pombe in high conductivity media. J Microbiol Meth 50:55–62

    Article  Google Scholar 

  86. Andrews JS, Mason VP, Thompson IP, Stephens GM, Markx GH (2006) Construction of artificially structured microbial consortia (ASMC) using dielectrophoresis: examining bacterial interactions via metabolic intermediates within environmental biofilms. J Microbiol Meth 64:96–106

    Article  CAS  Google Scholar 

  87. Verduzco-Luque CE, Alp B, Stephens GM, Markx GH (2003) Construction of biofilms with defined internal architecture using dielectrophoresis and flocculation. Biotechnol Bioeng 83:39–44

    Article  CAS  Google Scholar 

  88. Abidin ZZ, Downes L, Markx GH (2007) Large scale dielectrophoretic construction of biofilms using textile technology. Biotechnol Bioeng 96:1222–1225

    Article  CAS  Google Scholar 

  89. Gonzalez-Ramirez CA, Andrews JS, Kookos I, Mason VP, Stephens GM, Thompson IP, Markx GH (2005) A study of metabolic interactions within artificial biofilms of consortia of Acinetobacter sp. C6 and Pseudomonas putida R1. In: McBain A, Allison D, Pratten J, Spratt D, Upton M, Verran J (eds) Biofilms: persistence and ubiquity. Biofilm Club, Manchester

    Google Scholar 

  90. Song H, Payne S, Gray M, You LC (2009) Spatiotemporal modulation of biodiversity in a synthetic chemical-mediated ecosystem. Nat Chem Biol 5:929–935

    Article  CAS  Google Scholar 

  91. Wintermute EH, Silver PA (2010) Emergent cooperation in microbial metabolism. Mol Sys Biol 6:407

    Google Scholar 

  92. Kim HJ, Boedicker JQ, Choi JW, Ismagilov RF (2008) Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc Natl Acad Sci USA 105:18188–18193

    Article  CAS  Google Scholar 

  93. Crawford RJ, Webb HK, Truong VK, Hasan J, Ivanova E (2012) Surface topographical factors influencing bacterial attachment. Adv Coll Interf Sci 179–182:142–149

    Article  Google Scholar 

  94. Xu F, Sridharan B, Durmus NG, Wang S, Yavuz AS, Gurkan UA, Demirci U (2011) Living bacterial sacrificial porogens to engineer decellularized porous scaffolds. Plos One 6:1–12

    Google Scholar 

  95. Stephanopoulos G (2012) Synthetic biology and metabolic engineering. ACS Synth Biol 1:514–525

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank the EC for funding under project “Macumba”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard H. Markx .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schuster, J.J., Markx, G.H. (2013). Biofilm Architecture. In: Muffler, K., Ulber, R. (eds) Productive Biofilms. Advances in Biochemical Engineering/Biotechnology, vol 146. Springer, Cham. https://doi.org/10.1007/10_2013_248

Download citation

Publish with us

Policies and ethics