Skip to main content

Advancing In Vitro–In Vivo Extrapolations of Mechanism-Specific Toxicity Data Through Toxicokinetic Modeling

  • Chapter
  • First Online:
In vitro Environmental Toxicology - Concepts, Application and Assessment

Abstract

International legislation, such as the European REACH regulation (registration, evaluation, authorization, and restriction of chemicals), mandates the assessment of potential risks of an ever-growing number of chemicals to the environment and human health. Although this legislation is considered one of the most important investments in consumer safety ever, the downside is that the current testing strategies within REACH rely on extensive animal testing. To address the ethical conflicts arising from these increased testing requirements, decision-makers, such as the European Chemicals Agency (ECHA), are committed to Russel and Burch’s 3R principle (i.e., reduction, replacement, refinement) by demanding that animal experiments should be substituted with appropriate alternatives whenever possible. A potential solution of this dilemma might be the application of in vitro bioassays to estimate toxic effects using cells or cellular components instead of whole organisms. Although such assays are particularly useful to assess potential mechanisms of toxic action, scientists require appropriate methods to extrapolate results from the in vitro level to the situation in vivo. Toxicokinetic models are a straightforward means of bridging this gap. The present chapter describes different available options for in vitro-in vivo extrapolation (IVIVE) of mechanism-specific effects focused on fish species and also reviews the implications of confounding factors during the conduction of in vitro bioassays and their influence on the optimal choice of different dose metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwarzman MR, Wilson MP (2009) New science for chemicals policy. Science 326:1065–1066

    Article  CAS  Google Scholar 

  2. EC (2006) Regulation no. 1907/2006 of the European Parliament and of the Council concerning the registration, evaluation, authorization and restriction of chemicals

    Google Scholar 

  3. Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313:1072–1077

    Article  CAS  Google Scholar 

  4. ECHA (2008) Guidance on information requirements and chemical safety assessment. European Chemicals Agency, Helsinki, Finland

    Google Scholar 

  5. Schulte C, Tietjen L, Bambauer A, Fleischer A (2012) Five years REACH – lessons learned and first experiences. I. an authorities’ view. Environ Sci Eur 24:31

    Article  Google Scholar 

  6. Hansson SO, Rudén C (2006) Priority setting in the REACH system. Toxicol Sci 90:304–308

    Article  CAS  Google Scholar 

  7. Zarfl C, Matthies M (2013) PBT borderline chemicals under REACH. Environ Sci Eur 25:11

    Article  Google Scholar 

  8. Wolf O, Delgado L (2003) The impact of REACH on innovation in the chemical industry. European Commission, Joint Research Centre, report EUR 20999

    Google Scholar 

  9. ECHA (2015) Registered substances. European Chemicals Agency (ECHA); retrieved 28 May 2015, from http://echa.europa.eu/information-on-chemicals/registered-substances; last updated: 24 April 2015, Helsinki

  10. Hartung T, Rovida C (2009) Chemical regulators have overreached. Nature 460:1080–1081

    Article  CAS  Google Scholar 

  11. Russell WMS, Burch RL (1959) The principles of humane experimental technique; special edition, reprinted 1992. UFAW, London

    Google Scholar 

  12. ECHA (2011) The use of alternatives to testing on animals for the REACH regulation. European Chemicals Agency, Helsinki, Finland

    Google Scholar 

  13. Spielmann H, Sauer UG, Mekenyan O (2011) A critical evaluation of the 2011 ECHA reports on compliance with the REACH and CLP regulations and on the use of alternatives to testing on animals for compliance with the REACH regulation. Altern Lab Anim 39:481–493

    CAS  Google Scholar 

  14. Gilbert N (2011) Data gaps threaten chemical safety law. Nature 475:150–151

    Article  CAS  Google Scholar 

  15. Lilienblum W, Dekant W, Foth H, Gebel T, Hengstler JG, Kahl R, Kramer PJ, Schweinfurth H, Wollin KM (2008) Alternative methods to safety studies in experimental animals: role in the risk assessment of chemicals under the new European chemicals legislation (REACH). Arch Toxicol 82:211–236

    Article  CAS  Google Scholar 

  16. Yoon M, Campbell J, Andersen M, Clewell H (2012) Quantitative in vitro to in vivo extrapolation of cell-based toxicity assay results. Crit Rev Toxicol 42:633–652

    Article  CAS  Google Scholar 

  17. Pinto M, Robine-Leon S, Appay MD, Kedinger M, Triadou N, Dussaulx E, Lacroix B, Simon-Assmann P, Haffen K, Fogh J, Zweibaum A (1983) Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol Cell 47:323–330

    Google Scholar 

  18. Liu X, Chism JP, LeCluyse EL, Brouwer KR, Brouwer KL (1999) Correlation of biliary excretion in sandwich-cultured rat hepatocytes and in vivo in rats. Drug Metab Dispos 27:637–644

    CAS  Google Scholar 

  19. Swift B, Pfeifer ND, Brouwer KL (2010) Sandwich-cultured hepatocytes: an in vitro model to evaluate hepatobiliary transporter-based drug interactions and hepatotoxicity. Drug Metab Rev 42:446–471

    Article  CAS  Google Scholar 

  20. Balaz S (2009) Modeling kinetics of subcellular disposition of chemicals. Chem Rev 109:1793–1899

    Article  CAS  Google Scholar 

  21. Nichols JW, Fitzsimmons PN, Burkhard LP (2007) In vitro–in vivo extrapolation of quantitative hepatic biotransformation data for fish. II. Modeled effects on chemical bioaccumulation. Environ Toxicol Chem 26:1304–1319

    Article  CAS  Google Scholar 

  22. Nichols JW, Schultz IR, Fitzsimmons PN (2006) In vitro–in vivo extrapolation of quantitative hepatic biotransformation data for fish: I. A review of methods, and strategies for incorporating intrinsic clearance estimates into chemical kinetic models. Aquat Toxicol 78:74–90

    Article  CAS  Google Scholar 

  23. OECD 305 (2012) Test no. 305: bioaccumulation in fish: aqueous and dietary exposure. OECD Publishing, Paris

    Google Scholar 

  24. Schlechtriem C, Fliedner A, Schafers C (2012) Determination of lipid content in fish samples from bioaccumulation studies: contributions to the revision of guideline OECD 305. Environ Sci Eur 24:13

    Article  Google Scholar 

  25. Nichols J (2002) Modeling the uptake and disposition of hydrophobic organic chemicals in fish using a physiologically based approach. In: Verhaar HM, de Raat WK, Krüse J (eds) The practical applicability of toxicokinetic models in the risk assessment of chemicals. Springer, Netherlands, pp 109–133

    Chapter  Google Scholar 

  26. Mason G, Zacharewski T, Denomme MA, Safe L, Safe S (1987) Polybrominated dibenzo-p-dioxins and related compounds: quantitative in vivo and in vitro structure-activity relationships. Toxicology 44:245–255

    Article  CAS  Google Scholar 

  27. Safe S, Bandiera S, Sawyer T, Zmudzka B, Mason G, Romkes M, Denomme MA, Sparling J, Okey AB, Fujita T (1985) Effects of structure on binding to the 2,3,7,8-TCDD receptor protein and AHH induction - halogenated biphenyls. Environ Health Perspect 61:21–33

    CAS  Google Scholar 

  28. Fricker G, Drewe J, Huwyler J, Gutmann H, Beglinger C (1996) Relevance of p-glycoprotein for the enteral absorption of cyclosporin A: in vitro-in vivo correlation. Br J Pharmacol 118:1841–1847

    Article  CAS  Google Scholar 

  29. Dahan A, Hoffman A (2006) Use of a dynamic in vitro lipolysis model to rationalize oral formulation development for poor water soluble drugs: correlation with in vivo data and the relationship to intra-enterocyte processes in rats. Pharm Res 23:2165–2174

    Article  CAS  Google Scholar 

  30. Mackay D, Fraser A (2000) Bioaccumulation of persistent organic chemicals: mechanisms and models. Environ Pollut 110:375–391

    Article  CAS  Google Scholar 

  31. Segner H, Navas JM, Schäfers C, Wenzel A (2003) Potencies of estrogenic compounds in in vitro screening assays and in life cycle tests with zebrafish in vivo. Ecotox Environ Saf 54:315–322

    Article  CAS  Google Scholar 

  32. Van den Belt K, Berckmans P, Vangenechten C, Verheyen R, Witters H (2004) Comparative study on the in vitro/in vivo estrogenic potencies of 17β-estradiol, estrone, 17α-ethynylestradiol and nonylphenol. Aquat Toxicol 66:183–195

    Article  CAS  Google Scholar 

  33. Legler J, Zeinstra LM, Schuitemaker F, Lanser PH, Bogerd J, Brouwer A, Vethaak AD, de Voogt P, Murk AJ, van der Burg B (2002) Comparison of in vivo and in vitro reporter gene assays for short-term screening of estrogenic activity. Environ Sci Technol 36:4410–4415

    Article  CAS  Google Scholar 

  34. McCarty LS, Mackay D (1993) Enhancing ecotoxicological modeling and assessment body residues and modes of toxic action. Environ Sci Technol 27:1718–1728

    Article  CAS  Google Scholar 

  35. Barron MG, Anderson MJ, Lipton J, Dixon DG (1997) Evaluation of critical body residue QSARS for predicting organic chemical toxicity to aquatic organisms. SAR QSAR Environ Res 6:47–62

    Article  CAS  Google Scholar 

  36. Meador JP, Adams WJ, Escher BI, McCarty LS, McElroy AE, Sappington KG (2011) The tissue residue approach for toxicity assessment: findings and critical reviews from a society of environmental toxicology and chemistry Pellston workshop. Integr Environ Assess Manage 7:2–6

    Article  CAS  Google Scholar 

  37. Takacs AR (1995) Ancillary approaches to toxicokinetic evaluations. Toxicol Pathol 23:179–186

    Article  CAS  Google Scholar 

  38. Wetmore BA, Wambaugh JF, Ferguson SS, Sochaski MA, Rotroff DM, Freeman K, Clewell HJ, Dix DJ, Andersen ME, Houck KA, Allen B, Judson RS, Singh R, Kavlock RJ, Richard AM, Thomas RS (2012) Integration of dosimetry, exposure, and high-throughput screening data in chemical toxicity assessment. Toxicol Sci 125:157–174

    Article  CAS  Google Scholar 

  39. Groothuis FA, Heringa MB, Nicol B, Hermens JL, Blaauboer BJ, Kramer NI (2013) Dose metric considerations in in vitro assays to improve quantitative in vitro–in vivo dose extrapolations. Toxicology 332:30–40

    Article  CAS  Google Scholar 

  40. Gülden M, Seibert H (2005) Impact of bioavailability on the correlation between in vitro cytotoxic and in vivo acute fish toxic concentrations of chemicals. Aquat Toxicol 72:327–337

    Article  CAS  Google Scholar 

  41. Paustenbach DJ (2000) The practice of exposure assessment: a state-of-the-art review. J Toxicol Environ Health B 3:179–291

    Article  CAS  Google Scholar 

  42. Heringa MB, Schreurs RH, Busser F, Van Der Saag PT, Van Der Burg B, Hermens JL (2004) Toward more useful in vitro toxicity data with measured free concentrations. Environ Sci Technol 38:6263–6270

    Article  CAS  Google Scholar 

  43. Escher BI, Hermens JLM (2004) Internal exposure: linking bioavailability to effects. Environ Sci Technol 38:455A–462A

    Article  CAS  Google Scholar 

  44. Hervé F, Urien S, Albengres E, Duché J-C, Tillement J-P (1994) Drug binding in plasma. Clin Pharmacokinet 26:44–58

    Article  Google Scholar 

  45. Gülden M, Mörchel S, Seibert H (2001) Factors influencing nominal effective concentrations of chemical compounds in vitro: cell concentration. Toxicol In Vitro 15:233–243

    Article  Google Scholar 

  46. Riedl J, Altenburger R (2007) Physicochemical substance properties as indicators for unreliable exposure in microplate-based bioassays. Chemosphere 67:2210–2220

    Article  CAS  Google Scholar 

  47. Schirmer K, Chan AGJ, Greenberg BM, Dixon DG, Bols NC (1997) Methodology for demonstrating and measuring the photocytotoxicity of fluoranthene to fish cells in culture. Toxicol In Vitro 11:107–119

    Article  CAS  Google Scholar 

  48. Kramer NI, Krismartina M, Rico-Rico Á, Blaauboer BJ, Hermens JLM (2012) Quantifying processes determining the free concentration of phenanthrene in basal cytotoxicity assays. Chem Res Toxicol 25:436–445

    Article  CAS  Google Scholar 

  49. Knöbel M, Busser FJM, Rico-Rico Á, Kramer NI, Hermens JLM, Hafner C, Tanneberger K, Schirmer K, Scholz S (2012) Predicting adult fish acute lethality with the zebrafish embryo: relevance of test duration, endpoints, compound properties, and exposure concentration analysis. Environ Sci Technol 46:9690–9700

    Article  CAS  Google Scholar 

  50. Hinger G, Brinkmann M, Bluhm K, Sagner A, Takner H, Eisenträger A, Braunbeck T, Engwall M, Tiehm A, Hollert H (2011) Some heterocyclic aromatic compounds are Ah receptor agonists in the DR-CALUX assay and the EROD assay with RTL-W1 cells. Environ Sci Pollut Res 18:1297–1304

    Article  CAS  Google Scholar 

  51. Brinkmann M, Maletz S, Krauss M, Bluhm K, Schiwy S, Kuckelkorn J, Tiehm A, Brack W, Hollert H (2014) Heterocyclic aromatic hydrocarbons show estrogenic activity upon metabolization in a recombinant transactivation assay. Environ Sci Technol 48:5892–5901

    Article  CAS  Google Scholar 

  52. Kramer NI, van Eijkeren JCH, Hermens JLM (2007) Influence of albumin on sorption kinetics in solid-phase microextraction: consequences for chemical analyses and uptake processes. Anal Chem 79:6941–6948

    Article  CAS  Google Scholar 

  53. Oravcova´ J, Böhs B, Lindner W (1996) Drug-protein binding studies new trends in analytical and experimental methodology. J Chromatogr B Biomed Sci Appl 677:1–28

    Article  Google Scholar 

  54. Heringa MB, Hermens JLM (2003) Measurement of free concentrations using negligible depletion-solid phase microextraction (nd-SPME). Trends Analyt Chem 22:575–587

    Article  CAS  Google Scholar 

  55. Kramer NI, Busser FJM, Oosterwijk MTT, Schirmer K, Escher BI, Hermens JLM (2010) Development of a partition-controlled dosing system for cell assays. Chem Res Toxicol 23:1806–1814

    Article  CAS  Google Scholar 

  56. Smith KEC, Oostingh GJ, Mayer P (2010) Passive dosing for producing defined and constant exposure of hydrophobic organic compounds during in vitro toxicity tests. Chem Res Toxicol 23:55–65

    Article  CAS  Google Scholar 

  57. Gülden M, Seibert H (2003) In vitro–in vivo extrapolation: estimation of human serum concentrations of chemicals equivalent to cytotoxic concentrations in vitro. Toxicology 189:211–222

    Article  CAS  Google Scholar 

  58. Brinkmann M, Eichbaum K, Buchinger S, Reifferscheid G, Bui T, Schäffer A, Hollert H, Preuss TG (2014) Understanding receptor-mediated effects in rainbow trout: in vitro–in vivo extrapolation using physiologically based toxicokinetic models. Environ Sci Technol. doi:10.1021/es4053208

    Google Scholar 

  59. Castaño A, Bols N, Braunbeck T, Dierickx P, Halder M, Isomaa B, Kawahara K, Lee L, Mothersill C, Pärt P (2003) The use of fish cells in ecotoxicology. The report and recommendations of ECVAM workshop 47. Alternatives to laboratory animals: ATLA 31, 317

    Google Scholar 

  60. Ekwall B (1980) Preliminary studies on the validity of in vitro measurement of drug toxicity using HeLa cells II. Drug toxicity in the MIT-24 system compared with mouse and human lethal dosage of 52 drugs. Toxicol Lett 5:309–317

    Article  CAS  Google Scholar 

  61. Schultz TW (1989) Nonpolar narcosis: a review of the mechanism of action for baseline aquatic toxicity. Aquat toxicol hazard assess 12:104–109

    Article  Google Scholar 

  62. Schirmer K (2006) Proposal to improve vertebrate cell cultures to establish them as substitutes for the regulatory testing of chemicals and effluents using fish. Toxicology 224:163–183

    Article  CAS  Google Scholar 

  63. Clemedson C, Ekwall B (1999) Overview of the final MEIC results: I. The in vitro--in vitro evaluation. Toxicol In Vitro 13:657–663

    Article  CAS  Google Scholar 

  64. Ekwall B (1999) Overview of the final MEIC results: II. The in vitro–in vivo evaluation, including the selection of a practical battery of cell tests for prediction of acute lethal blood concentrations in Humans 1. Toxicol In Vitro 13:665–673

    Article  CAS  Google Scholar 

  65. Escher BI, Hermens JLM (2002) Modes of action in ecotoxicology: their role in body burdens, species sensitivity, QSARs, and mixture effects. Environ Sci Technol 36:4201–4217

    Article  CAS  Google Scholar 

  66. Baird DJ, Van den Brink PJ (2007) Using biological traits to predict species sensitivity to toxic substances. Ecotoxicol Environ Saf 67:296–301

    Article  CAS  Google Scholar 

  67. Rubach MN, Ashauer R, Maund SJ, Baird DJ, Van den Brink PJ (2010) Toxicokinetic variation in 15 freshwater arthropod species exposed to the insecticide chlorpyrifos. Environ Toxicol Chem 29:2225–2234

    Article  CAS  Google Scholar 

  68. Buchwalter D, Jenkins J, Curtis L (2002) Respiratory strategy is a major determinant of [3H] water and [14C] chlorpyrifos uptake in aquatic insects. Can J Fish Aquat Sci 59:1315–1322

    Article  CAS  Google Scholar 

  69. Livingstone D (1998) The fate of organic xenobiotics in aquatic ecosystems: quantitative and qualitative differences in biotransformation by invertebrates and fish. Comp Biochem Physiol A Mol Integr Physiol 120:43–49

    Article  CAS  Google Scholar 

  70. Nyman A-M, Schirmer K, Ashauer R (2014) Importance of toxicokinetics for interspecies variation in sensitivity to chemicals. Environ Sci Technol 48:5946–5954

    Article  CAS  Google Scholar 

  71. Meador JP (1997) Comparative toxicokinetics of tributyltin in five marine species and its utility in predicting bioaccumulation and acute toxicity. Aquat Toxicol 37:307–326

    Article  CAS  Google Scholar 

  72. Krishnan K, Peyret T (2009) Physiologically based toxicokinetic (PBTK) modeling in ecotoxicology. Ecotoxicology modeling. Springer, Newyork, pp 145–175

    Google Scholar 

  73. US-EPA (2006) Approaches for the application of physiologically based pharmacokinetic (PBPK) models and supporting data in risk assessment (Final Report). US Environmental Protection Agency, Washington

    Google Scholar 

  74. Chiu WA, Barton HA, DeWoskin RS, Schlosser P, Thompson CM, Sonawane B, Lipscomb JC, Krishnan K (2007) Evaluation of physiologically based pharmacokinetic models for use in risk assessment. J Appl Toxicol 27:218–237

    Article  CAS  Google Scholar 

  75. Stadnicka J, Schirmer K, Ashauer R (2012) Predicting concentrations of organic chemicals in fish by using toxicokinetic models. Environ Sci Technol 46:3273–3280

    Article  CAS  Google Scholar 

  76. Landrum PF, Lydy MJ, Lee H (1992) Toxicokinetics in aquatic systems: model comparisons and use in hazard assessment. Environ Toxicol Chem 11:1709–1725

    Article  CAS  Google Scholar 

  77. Arnot JA, Gobas FAPC (2004) A food web bioaccumulation model for organic chemicals in aquatic ecosystems. Environ Toxicol Chem 23:2343–2355

    Article  CAS  Google Scholar 

  78. Mager DE, Wyska E, Jusko WJ (2003) Diversity of mechanism-based pharmacodynamic models. Drug Metab Dispos 31:510–518

    Article  CAS  Google Scholar 

  79. Punt A, Brand W, Murk AJ, van Wezel AP, Schriks M, Heringa MB (2013) Effect of combining in vitro estrogenicity data with kinetic characteristics of estrogenic compounds on the in vivo predictive value. Toxicol In Vitro 27:44–51

    Article  CAS  Google Scholar 

  80. Hendriks AJ, van der Linde A, Cornelissen G, Sijm DT (2001) The power of size. 1. Rate constants and equilibrium ratios for accumulation of organic substances related to octanol‐water partition ratio and species weight. Environ Toxicol Chem 20:1399–1420

    Article  CAS  Google Scholar 

  81. Nichols JW, McKim JM, Andersen ME, Gargas ML, Clewell Iii HJ, Erickson RJ (1990) A physiologically based toxicokinetic model for the uptake and disposition of waterborne organic chemicals in fish. Toxicol Appl Pharmacol 106:433–447

    Article  CAS  Google Scholar 

  82. Nichols JW, McKim JM, Lien GJ, Hoffman AD, Bertelsen SL (1991) Physiologically based toxicokinetic modeling of three waterborne chloroethanes in rainbow trout (Oncorhynchus mykiss). Toxicol Appl Pharmacol 110:374–389

    Article  CAS  Google Scholar 

  83. Louisse J, Verwei M, Woutersen RA, Blaauboer BJ, Rietjens IM (2012) Toward in vitro biomarkers for developmental toxicity and their extrapolation to the in vivo situation. Expert Opin Drug Metab Toxicol 8:11–27

    Article  CAS  Google Scholar 

  84. Timchalk C, Nolan R, Mendrala A, Dittenber D, Brzak K, Mattsson J (2002) A physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model for the organophosphate insecticide chlorpyrifos in rats and humans. Toxicol Sci 66:34–53

    Article  CAS  Google Scholar 

  85. Barrett J, Della Casa Alberighi O, Läer S, Meibohm B (2012) Physiologically based pharmacokinetic (PBPK) modeling in children. Clin Pharmacol Ther 92:40–49

    Article  CAS  Google Scholar 

  86. Bois FY, Jamei M, Clewell HJ (2010) PBPK modelling of inter-individual variability in the pharmacokinetics of environmental chemicals. Toxicology 278:256–267

    Article  CAS  Google Scholar 

  87. Jongeneelen FJ, Berge WFT (2011) A generic, cross-chemical predictive PBTK model with multiple entry routes running as application in MS excel; design of the model and comparison of predictions with experimental results. Ann Occup Hyg 55:841–864

    CAS  Google Scholar 

  88. Freijer JI, van Eijkeren JCH, Sips AJAM (1999) Model for estimating initial burden and daily absorption of lipophilic contaminants in cattle. RIVM Report 643810005. Dutch National Institute for Public Health and the Environment (RIVM). pp. 59

    Google Scholar 

  89. Craigmill A (2003) A physiologically based pharmacokinetic model for oxytetracycline residues in sheep. J Vet Pharmacol Ther 26:55–63

    Article  CAS  Google Scholar 

  90. Buur JL, Baynes RE, Craigmill AL, Riviere JE (2005) Development of a physiologic-based pharmacokinetic model for estimating sulfamethazine concentrations in swine and application to prediction of violative residues in edible tissues. Am J Vet Res 66:1686–1693

    Article  CAS  Google Scholar 

  91. Tardif R, Lapare S, Krishnan K, Brodeur J (1993) Physiologically based modeling of the toxicokinetic interaction between toluene and m-xylene in the rat. Toxicol Appl Pharmacol 120:266–273

    Article  CAS  Google Scholar 

  92. Garg A, Balthasar JP (2007) Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn 34:687–709

    Article  CAS  Google Scholar 

  93. Thrall KD, Vucelick ME, Gies RA, Benson J (2000) Comparative metabolism of carbon tetrachloride in rats, mice, and hamsters using gas uptake and PBPK modeling. J Toxicol Environ Health A 60:531–548

    Article  CAS  Google Scholar 

  94. Weijs L, Yang RS, Das K, Covaci A, Blust R (2013) Application of Bayesian population physiologically based pharmacokinetic (PBPK) modeling and Markov chain Monte Carlo simulations to pesticide kinetics studies in protected marine mammals: DDT, DDE, and DDD in harbor porpoises. Environ Sci Technol 47:4365–4374

    Article  CAS  Google Scholar 

  95. Van Eijkeren JC, Zeilmaker MJ, Kan C, Traag WA, Hoogenboom L (2006) A toxicokinetic model for the carry-over of dioxins and PCBs from feed and soil to eggs. Food Addit Contam 23:509–517

    Article  CAS  Google Scholar 

  96. Nichols JW, Bennett RS, Rossmann R, French JB, Sappington KG (2010) A physiologically based toxicokinetic model for methylmercury in female American kestrels. Environ Toxicol Chem 29:1854–1867

    Google Scholar 

  97. Bungay P, Dedrick R, Guarino A (1976) Pharmacokinetic modeling of the dogfish shark (Squalus acanthias): distribution and urinary and biliary excretion of phenol red and its glucuronide. J Pharmacokinet Biopharm 4:377–388

    Article  CAS  Google Scholar 

  98. Law FCP, Abedini S, Kennedy CJ (1991) A biologically based toxicokinetic model for pyrene in rainbow trout. Toxicol Appl Pharmacol 110:390–402

    Article  CAS  Google Scholar 

  99. Brinkmann M, Eichbaum K, Kammann U, Hudjetz S, Cofalla C, Buchinger S, Reifferscheid G, Schüttrumpf H, Preuss T, Hollert H (2014) Physiologically-based toxicokinetic models help identifying the key factors affecting contaminant uptake during flood events. Aquat Toxicol 152:38–46

    Article  CAS  Google Scholar 

  100. Nichols JW, Jensen KM, Tietge JE, Johnson RD (1998) Physiologically based toxicokinetic model for maternal transfer of 2,3,7,8-tetrachlorodibenzo-p-dioxin in brook trout (Salvelinus fontinalis). Environ Toxicol Chem 17:2422–2434

    Article  CAS  Google Scholar 

  101. Lien GJ, McKim JM, Hoffman AD, Jenson CT (2001) A physiologically based toxicokinetic model for Lake trout (Salvelinus namaycush). Aquat Toxicol 51:335–350

    Article  CAS  Google Scholar 

  102. Brocklebank JR, Namdari R, Law F (1997) An oxytetracycline residue depletion study to assess the physiologically based pharmokinetic (PBPK) model in farmed Atlantic salmon. Can Vet J 38:645

    CAS  Google Scholar 

  103. Nichols JW, McKim JM, Lien GJ, Hoffman AD, Bertelsen SL, Gallinat CA (1993) Physiologically-based toxicokinetic modeling of three waterborne chloroethanes in channel catfish, Ictalurus punctatus. Aquat Toxicol 27:83–111

    Article  CAS  Google Scholar 

  104. Liao C-M, Liang H-M, Chen B-C, Singh S, Tsai J-W, Chou Y-H, Lin W-T (2005) Dynamical coupling of PBPK/PD and AUC-based toxicity models for arsenic in tilapia Oreochromis mossambicus from Blackfoot disease area in Taiwan. Environ Pollut 135:221–233

    Article  CAS  Google Scholar 

  105. Péry ARR, Devillers J, Brochot C, Mombelli E, Palluel O, Piccini B, Brion F, Beaudouin R (2013) A physiologically based toxicokinetic model for the zebrafish Danio rerio. Environ Sci Technol 48:781–790

    Article  CAS  Google Scholar 

  106. Lien GJ, McKim JM (1993) Predicting branchial and cutaneous uptake of 2,2′,5,5′-tetrachlorobiphenyl in fathead minnows (Pimephales promelas) and Japanese medaka (Oryzias latipes): rate limiting factors. Aquat Toxicol 27:15–31

    Article  CAS  Google Scholar 

  107. Woofter RT, Brendtro K, Ramsdell JS (2005) Uptake and elimination of brevetoxin in blood of striped mullet (Mugil cephalus) after aqueous exposure to Karenia brevis. Environ Health Perspect 113:11–16

    Article  CAS  Google Scholar 

  108. Caldwell JC, Evans MV, Krishnan K (2012) Cutting edge PBPK models and analyses: providing the basis for future modeling efforts and bridges to emerging toxicology paradigms. J Toxicol 2012

    Google Scholar 

  109. DeJongh J, Forsby A, Houston JB, Beckman M, Combes R, Blaauboer BJ (1999) An integrated approach to the prediction of systemic toxicity using computer-based biokinetic models and biological in vitro test methods: overview of a prevalidation study based on the ECITTS1 project. Toxicol In Vitro 13:549–554

    Article  CAS  Google Scholar 

  110. Verwei M, van Burgsteden JA, Krul CAM, van de Sandt JJM, Freidig AP (2006) Prediction of in vivo embryotoxic effect levels with a combination of in vitro studies and PBPK modelling. Toxicol Lett 165:79–87

    Article  CAS  Google Scholar 

  111. Louisse J, de Jong E, van de Sandt JJM, Blaauboer BJ, Woutersen RA, Piersma AH, Rietjens IMCM, Verwei M (2010) The use of in vitro toxicity data and physiologically based kinetic modeling to predict dose–response curves for in vivo developmental toxicity of glycol ethers in rat and man. Toxicol Sci 118:470–484

    Article  CAS  Google Scholar 

  112. Hecker M, Hollert H (2011) Endocrine disruptor screening: regulatory perspectives and needs. Environ Sci Eur 23:15

    Article  Google Scholar 

  113. Stadnicka-Michalak J, Tanneberger K, Schirmer K, Ashauer R (2014) Measured and modeled toxicokinetics in cultured fish cells and application to in vitro-in vivo-toxicity extrapolation. PLoS One 9, e92303

    Article  CAS  Google Scholar 

  114. Gobas FAPC, de Wolf W, Burkhard LP, Verbruggen E, Plotzke K (2009) Revisiting bioaccumulation criteria for POPs and PBT assessments. Integr Environ Assess Manag 5:624–637

    Article  CAS  Google Scholar 

  115. Swackhamer DL, Needham LL, Powell DE, Muir DCG (2009) Use of measurement data in evaluating exposure of humans and wildlife to POPs/PBTs. Integr Environ Assess Manag 5:638–661

    Article  CAS  Google Scholar 

  116. Schafer S, Buchmeier G, Claus E, Duester L, Heininger P, Korner A, Mayer P, Paschke A, Rauert C, Reifferscheid G, Rudel H, Schlechtriem C, Schroter-Kermani C, Schudoma D, Smedes F, Steffen D, Vietoris F (2015) Bioaccumulation in aquatic systems: methodological approaches, monitoring and assessment. Environ Sci Eur 27:5

    Article  CAS  Google Scholar 

  117. Van der Oost R, Beyer J, Vermeulen NP (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149

    Article  Google Scholar 

  118. Van der Kooij L, Van De Meent D, Van Leeuwen C, Bruggeman W (1991) Deriving quality criteria for water and sediment from the results of aquatic toxicity tests and product standards: application of the equilibrium partitioning method. Water Res 25:697–705

    Article  Google Scholar 

  119. Franke C (1996) How meaningful is the bioconcentration factor for risk assessment? Chemosphere 32:1897–1905

    Article  CAS  Google Scholar 

  120. Gobas FA (1993) A model for predicting the bioaccumulation of hydrophobic organic chemicals in aquatic food-webs: application to Lake Ontario. Ecol Model 69:1–17

    Article  CAS  Google Scholar 

  121. Morrison HA, Gobas FA, Lazar R, Whittle DM, Haffner GD (1997) Development and verification of a benthic/pelagic food web bioaccumulation model for PCB congeners in western Lake Erie. Environ Sci Technol 31:3267–3273

    Article  CAS  Google Scholar 

  122. Sijm DT, Seinen W, Opperhuizen A (1992) Life-cycle biomagnification study in fish. Environ Sci Technol 26:2162–2174

    Article  CAS  Google Scholar 

  123. Thomann RV, Connolly JP (1984) Model of PCB in the Lake Michigan lake trout food chain. Environ Sci Technol 18:65–71

    Article  CAS  Google Scholar 

  124. Brinkmann M, Schlechtriem C, Reininghaus M, Eichbaum K, Buchinger S, Reifferscheid G, Hollert H, Preuss TG (2016) Cross-species extrapolation of uptake and disposition of neutral organic chemicals in fish using a multispecies physiologically-based toxicokinetic model framework. Environ Sci Tech 50:1914–1923

    Article  CAS  Google Scholar 

  125. Ankley G, Bennett R, Erickson R, Hoff D, Hornung M, Johnson R, Mount D, Nichols J, Russom C, Schmieder P, Serrano J, Tietge J, Villeneuve D (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29:730–741

    Article  CAS  Google Scholar 

  126. Villeneuve DL, Garcia-Reyero N (2011) Vision & strategy: predictive ecotoxicology in the 21st century. Environ Toxicol Chem 30:1–8

    Article  CAS  Google Scholar 

  127. Kramer VJ, Etterson MA, Hecker M, Murphy CA, Roesijadi G, Spade DJ, Spromberg JA, Wang M, Ankley GT (2011) Adverse outcome pathways and ecological risk assessment: bridging to population‐level effects. Environ Toxicol Chem 30:64–76

    Article  CAS  Google Scholar 

  128. Groh KJ, Carvalho RN, Chipman JK, Denslow ND, Halder M, Murphy CA, Roelofs D, Rolaki A, Schirmer K, Watanabe KH (2015) Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: I challenges and research needs in ecotoxicology. Chemosphere 120:764–777

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding through the project “DioRAMA – Assessment of the dioxin-like activity in sediments and fish for sediment evaluation “that was financed by the German Federal Ministry of Transport, Building and Urban Development, as well as a personal scholarship of the German National Academic Foundation (“Studienstiftung des deutschen Volkes“) which was granted to the first author.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Markus Brinkmann or Henner Hollert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brinkmann, M., Preuss, T.G., Hollert, H. (2016). Advancing In Vitro–In Vivo Extrapolations of Mechanism-Specific Toxicity Data Through Toxicokinetic Modeling. In: Reifferscheid, G., Buchinger, S. (eds) In vitro Environmental Toxicology - Concepts, Application and Assessment. Advances in Biochemical Engineering/Biotechnology, vol 157. Springer, Cham. https://doi.org/10.1007/10_2015_5015

Download citation

Publish with us

Policies and ethics