Skip to main content

Mathematical Models of Synaptic Transmission and Short-Term Plasticity

  • Chapter
  • First Online:
Tutorials in Mathematical Biosciences II

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 1867))

Abstract

The synapse is the storehouse of memories, both short-term and long-term, and is the location at which learning takes place. There are trillions of synapses in the brain, and in many ways they are one of the fundamental building blocks of this extraordinary organ. As one might expect for such an important structure, the inner workings of the synapse are quite complex. This complexity, along with the small size of a typical synapse, poses many experimental challenges. It is for this reason that mathematical models and computer simulations of synaptic transmission have been used for more than two decades. Many of these models have focused on the presynaptic terminal, particularly on the role of Ca2+ in gating transmitter release (Parnas and Segel, 1981; Simon and Llinás, 1985; Fogelson and Zucker, 1985; Yamada and Zucker, 1992; Aharon et al., 1994; Heidelberger et al., 1994; Bertram et al., 1996; Naraghi and Neher, 1997; Bertram et al., 1999a; Tang et al., 2000; Matveev et al., 2002). The terminal is where neurotransmitters are released, and is the site of several forms of short-term plasticity, such as facilitation, augmentation, and depression (Zucker and Regehr, 2002). Mathematical modeling has been used to investigate the properties of various plasticity mechanisms, and to refine understanding of these mechanisms (Fogelson and Zucker, 1985; Yamada and Zucker, 1992; Bertram et al., 1996; Klingauf and Neher, 1997; Bertram and Sherman, 1998; Tang et al., 2000; Matveev et al., 2002). Importantly, modeling has in several cases been the motivation for new experiments (Zucker and Landò, 1986; Hochner et al., 1989; Kamiya and Zucker, 1994; Winslow et al., 1994; Tang et al., 2000). In this chapter, we describe some of the mathematical models that have been developed for transmitter release and presynaptic plasticity, and discuss how these models have shaped, and have been shaped by, experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Editor information

James Sneyd

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin/Heidelberg

About this chapter

Cite this chapter

Bertram, R. (2005). Mathematical Models of Synaptic Transmission and Short-Term Plasticity. In: Sneyd, J. (eds) Tutorials in Mathematical Biosciences II. Lecture Notes in Mathematics, vol 1867. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11406501_7

Download citation

Publish with us

Policies and ethics