Skip to main content

Relations Between Higher Order TV Regularization and Support Vector Regression

  • Conference paper
Scale Space and PDE Methods in Computer Vision (Scale-Space 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3459))

Included in the following conference series:

Abstract

We study the connection between higher order total variation (TV) regularization and support vector regression (SVR) with spline kernels in a one-dimensional discrete setting. We prove that the contact problem arising in the tube formulation of the TV minimization problem is equivalent to the SVR problem. Since the SVR problem can be solved by standard quadratic programming methods this provides us with an algorithm for the solution of the contact problem even for higher order derivatives. Our numerical experiments illustrate the approach for various orders of derivatives and show its close relation to corresponding nonlinear diffusion and diffusion–reaction equations.

This joint research was supported by the Deutsche Forschungsgemeinschaft within the projects WE 2602/2-2 and SCHN 457/5-2. This is gratefully acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill–posed problems. Inverse Problems 10, 1217–1229 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chambolle, A.: An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  3. Chan, T.F., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM Journal on Scientific Computing 22(2), 503–516 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Davies, P.L., Kovac, A.: Local extremes, runs, strings and multiresolution. Annals of Statistics 29, 1–65 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Didas, S.: Higher order variational methods for noise removal in signals and images. Diploma Thesis, Dept. of Math., Saarland University, Saarbrücken, Germany (2004)

    Google Scholar 

  6. Girosi, F.: An equivalence between sparse approximation and support vector machines. Neural Computation 10(6), 1455–1480 (1998)

    Article  Google Scholar 

  7. Hinterberger, W., Hintermüller, M., Kunisch, K., von Oehsen, M., Scherzer, O.: Tube methods for BV regularization. Journal of Mathematical Imaging and Vision 19, 223–238 (2003)

    Article  Google Scholar 

  8. Loog, M.: Support blob machines: The sparsification of linear scale-space. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 14–24. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Lysaker, M., Lundervold, A., Tai, X.-C.: Noise removal using fourth-order partial differential equations with applications to medical magnetic resonance images in space and time. Technical Report CAM-02-44, Department of Mathematics, University of California (2002)

    Google Scholar 

  10. Mammen, E., van de Geer, S.: Locally adaptive regression splines. Annals of Statistics 25(1), 387–413 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Mangasarian, O.L., Schumaker, L.L.: Best summation formulae and discrete splines via mathematical programming. SIAM Journal on Numerical Analysis 10(3), 448–459 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  12. Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. University Lecture Series, vol. 22. AMS, Providence (2001)

    MATH  Google Scholar 

  13. Nielsen, M., Florack, L., Deriche, R.: Regularization, scale-space and edge detection filters. Journal of Mathematical Imaging and Vision 7, 291–307 (1997)

    Article  MathSciNet  Google Scholar 

  14. Obereder, A., Osher, S., Scherzer, O.: On the use of dual norms in bounded variation type regularization. Technical report, Department of Computer Science, University of Innsbruck (2004)

    Google Scholar 

  15. Pollak, I., Willsky, A.S., Huang, Y.: Nonlinear evolution equations as fast and exact solvers of estimation problems. IEEE Trans. on Signal Processing (in print)

    Google Scholar 

  16. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  17. Scherzer, O.: Denoising with higher order derivatives of bounded variation and an application to parameter estimation. Computing 60, 1–27 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Scherzer, O.: Taut string algorithm and regularization programs with G-norm. Journal of Mathematical Imaging and Vision (in print)

    Google Scholar 

  19. Scherzer, O., Weickert, J.: Relations between regularization and diffusion filtering. Journal of Mathematical Imaging and Vision 12, 43–63 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Steidl, G.: A note on the dual treatment of higher order regularization functionals. Technical Report 278, Institute of Mathematics, University of Mannheim (2004)

    Google Scholar 

  21. Steidl, G., Weickert, J., Brox, T., Mrázek, P., Welk, M.: On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and SIDEs. SIAM Journal on Numerical Analysis 42(2), 686–713 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Strong, D.M.: Adaptive Total Variation Minimizing Image Restoration. PhD thesis, Department of Mathematics, University of California (1997)

    Google Scholar 

  23. Vapnik, V.N.: Statistical Learning Theory. John Wiley and Sons, Inc., Chichester (1998)

    MATH  Google Scholar 

  24. Vogel, C.R.: Computational Methods for Inverse Problems. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  25. Wahba, G.: Spline Models for Observational Data. SIAM, Philadelphia (1990)

    MATH  Google Scholar 

  26. You, Y.-L., Kaveh, M.: Fourth-order partial differential equations for noise removal. IEEE Transactions on Image Processing 9(10), 1723–1730 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Steidl, G., Didas, S., Neumann, J. (2005). Relations Between Higher Order TV Regularization and Support Vector Regression. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds) Scale Space and PDE Methods in Computer Vision. Scale-Space 2005. Lecture Notes in Computer Science, vol 3459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11408031_44

Download citation

  • DOI: https://doi.org/10.1007/11408031_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25547-5

  • Online ISBN: 978-3-540-32012-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics