Skip to main content

Discrete Fourier Transform, Joint Linear Complexity and Generalized Joint Linear Complexity of Multisequences

  • Conference paper
Sequences and Their Applications - SETA 2004 (SETA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3486))

Included in the following conference series:

Abstract

Let S 1, S 2, ..., S t be t N-periodic sequences over \({\mathbb F}_{q}\). The joint linear complexity L(S 1,S 2,..., S t ) is the least order of a linear recurrence relation that S 1, S 2, ...,S t satisfy simultaneously. Since the \({\mathbb F}_{q}\)-linear spaces \({\mathbb F}^{t}_{q}\) and \({\mathbb F}_{q^{t}}\) are isomorphic, a multisequence can also be identified with a single sequence \({\mathcal S}\) having its terms in the extension field \({\mathbb F}_{q^{t}}\). The linear complexity \(L({\mathcal S})\) of \({\mathcal S}\), i.e. the length of the shortest recurrence relation with coefficients in \({\mathbb F}_{q^{t}}\) that \({\mathcal S}\) satisfies, may be significantly smaller than L(S 1,S 2,..., S t ). We investigate relations between \(L({\mathcal S})\) and L(S 1,S 2,..., S t ), in particular we establish lower bounds on \(L({\mathcal S})\) expressed in terms of L(S 1,S 2,..., S t ).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cusick, T., Ding, C., Renvall, A.: Stream Ciphers and Number Theory (Revised edn.). North-Holland, Amsterdam (2004)

    Google Scholar 

  2. Ding, C., Shan, W., Xiao, G.: The Stability Theory of Stream Ciphers. LNCS, vol. 561. Springer, Heidelberg (1991)

    MATH  Google Scholar 

  3. Hasse, H.: Theorie der höheren Differentiale in einem algebraischen Funktionenkörper mit vollkommenem Konstantenkörper bei beliebiger Charakteristik. J. Reine Angew. Math. 175, 50–54 (1936)

    Article  Google Scholar 

  4. Jungnickel, D.: Finite Fields: Structure and Arithmetics, Bibliographisches Institut, Mannheim (1993)

    Google Scholar 

  5. Lidl, R., Niederreiter, H.: Finite Fields. Addison-Wesley, Reading (1983)

    MATH  Google Scholar 

  6. Massey, J.L., Serconek, S.: Linear complexity of periodic sequences: A general theory. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 358–371. Springer, Heidelberg (1996)

    Google Scholar 

  7. Meidl, W., Niederreiter, H.: Linear complexity, k-error linear complexity, and the discrete Fourier transform. J. Complexity 18, 87–103 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Meidl, W., Niederreiter, H.: On the expected value of the linear complexity and the k-error linear complexity of periodic sequences. IEEE Trans. Inform. Theory 48, 2817–2825 (2002)

    Article  MathSciNet  Google Scholar 

  9. Meidl, W., Niederreiter, H.: The expected value of the joint linear complexity of periodic multisequences. J. Complexity 19, 61–72 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Niederreiter, H.: Linear complexity and related complexity measures for sequences. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 1–17. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Rueppel, R.A.: Stream ciphers. In: Simmons, G.J. (ed.) Contemporary Cryptology: The Science of Information Integrity, pp. 65–134. IEEE Press, New York (1992)

    Google Scholar 

  12. Sakata, S.: Extension of the Berlekamp-Massey algorithm to N dimensions. Information and Computation 84, 207–239 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. Wang, L.P., Niederreiter, H.: Enumeration results on the joint linear complexity of multisequences, Finite Fields Appl. (to appear)

    Google Scholar 

  14. Wang, L.P., Zhu, Y.F.: F[x]-lattice basis reduction algorithm and multisequence synthesis. Sci. China Ser. F 44, 321–328 (2001)

    MATH  MathSciNet  Google Scholar 

  15. Xing, C.P.: Multi-sequences with almost perfect linear complexity profile and function fields over finite fields. J. Complexity 16, 661–675 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meidl, W. (2005). Discrete Fourier Transform, Joint Linear Complexity and Generalized Joint Linear Complexity of Multisequences. In: Helleseth, T., Sarwate, D., Song, HY., Yang, K. (eds) Sequences and Their Applications - SETA 2004. SETA 2004. Lecture Notes in Computer Science, vol 3486. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11423461_5

Download citation

  • DOI: https://doi.org/10.1007/11423461_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26084-4

  • Online ISBN: 978-3-540-32048-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics