Skip to main content

A Competitive-Based Method for Determining the Number of Groups: A Clinical Application

  • Conference paper
Computational Intelligence and Bioinspired Systems (IWANN 2005)

Abstract

A proper gait assessment in patients with knee or hip injuries strongly determines the diagnosis and consequently the evolution of the pathology, the quality of life of implanted patients, and the overall costs involved. Among the different strategies to clinically assess gait, 3D optical tracking provides a reliable and objective evaluation. This method involves state-of-the-art image analysis that performs anatomical measurements upon bony landmarks identified by markers attached to the patient. We show how this technology can be used to perform patients diagnosis and follow-up by grouping the results of gait measurement with a competitive neural network where the number of clusters is automatically determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kawakami, H., Sugano, N., Yonenobu, K., Yoshikawa, H., Ochi, T., Hattori, A., Suzuki, N.: Gait Analysis System for Assessment of Dynamic Loading Axis of the Knee. Gait & Posture 21, 125–130 (2005)

    Article  Google Scholar 

  2. Ghoussayni, S., Stevens, C., Durham, S., Ewins, D.: Assessment and Validation of a Simple Automated Method for the Detection of Gait Events and Intervals. Gait & Posture 20, 266–272 (2004)

    Article  Google Scholar 

  3. Hallemans, A., De Clercq, D., Otten, B., Aerts, P.: 3D Joint Dynamics of Walking in Toddlers: A Cross-Sectional Study Spanning the First Rapid Development Phase of Walking. Gait & Posture (in press)

    Google Scholar 

  4. Kim, C.M., Eng, J.J.: Magnitude and Pattern of 3D Kinematic and Kinetic Gait Profiles in Persons with Stroke: Relationship to Walking Speed. Gait & Posture 20, 140–146 (2004)

    Article  Google Scholar 

  5. Manal, K., Stanhope, S.J.: A Novel Method for Displaying Gait and Clinical Movement Analysis Data. Gait & Posture 20, 222–226 (2004)

    Article  Google Scholar 

  6. Alkjaer, T., Simonsen, E.B., Dyhre-Poulsen, K.: Comparison of Inverse Dynamics Calculated by Two- and Three-Dimensional Models During Walking. Gait & Posture 13, 73–77 (2001)

    Article  Google Scholar 

  7. Miller, C., Mulavara, A., Bloomberg, J.: A Quasi-Static Method for Determining the Characteristics of a Motion Capture Camera System in a “Split-Volume” Configuration. Gait & Posture 16, 283–287 (2002)

    Article  Google Scholar 

  8. Sadeghi, H., Allard, P., Shafie, K., Mathieu, P.A., Sadeghi, S., Prince, F., Ramsay, J.: Reduction of Gait Data Variability Using Curve Registration. Gait & Posture 12, 257–264 (2000)

    Article  Google Scholar 

  9. Churchill, A.J.G., Halligan, P.W., Wade, T.W.: RIVCAM: A Simple Video-Based Kinematic Analysis for Clinical Disorders of Gait. Computer Methods and Programs in Biomedicine 69(3), 197–209 (2001)

    Article  Google Scholar 

  10. Holzreiter, S.H., Köhle, M.E.: Assessment of Gait Patterns Using Neural Networks. J. Biomech. 26(6), 645–651 (1993)

    Article  Google Scholar 

  11. Köhle, M.E., Merkl, D.: Identification of gait patterns with self-organizing maps based on ground reaction force. In: Proc. of the European Symposium on Artificial Neural Networks (ESANN 1996), Bruges, Belgium, April 1996, pp. 24–26 (1996)

    Google Scholar 

  12. Köhle, M.E., Merkl, D.: Analyzing human gait patterns for malfunction detection. In: Proceedings of the 2000 ACM symposium on Applied computing, Como, Italy, pp. 41–45 (2000)

    Google Scholar 

  13. Bouguet, J.Y.: Camera Calibration Toolbox for Matlab (2004), http://www.vision.caltech.edu/bouguetj/calib_doc/

  14. Ahalt, S.C., Krishnamurthy, A.K., Chen, P., Melton, D.E.: Competitive learning algorithms for vector quantization. Neural Networks 3(3), 277–290 (1990)

    Article  Google Scholar 

  15. Sánchez, A.M., Vico, F.J., Veredas, F.J., Cabello, S., López, I.: Evolutionary competitive learning for automatic detection of oil leaks in olive pomace. Technical Report # 05/04. Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga, Spain (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sánchez, A. et al. (2005). A Competitive-Based Method for Determining the Number of Groups: A Clinical Application. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_149

Download citation

  • DOI: https://doi.org/10.1007/11494669_149

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26208-4

  • Online ISBN: 978-3-540-32106-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics