Skip to main content

A Survey of Moving Frames

  • Conference paper
Computer Algebra and Geometric Algebra with Applications (IWMM 2004, GIAE 2004)

Abstract

This paper surveys the new, algorithmic theory of moving frames developed by the author and M. Fels. Applications in geometry, computer vision, classical invariant theory, the calculus of variations, and numerical analysis are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akivis, M.A., Rosenfeld, B.A.: Élie Cartan (1869-1951); Translations Math. monographs, vol. 123. American Math. Soc., Providence (1993)

    Google Scholar 

  2. Anderson, I.M.: The Variational Bicomplex, Utah State Technical Report (1989), http://math.usu.edu/~fg_mp

  3. Anderson, I.M.: The Vessiot Handbook, Technical Report, Utah Sate University (2000)

    Google Scholar 

  4. Anderson, I.M., Kamran, N.: The variational bicomplex for second order scalar partial differential equations in the plane. Duke Math. J. 87, 265–319 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bazin, P.–L., Boutin, M.: Structure from motion: theoretical foundations of a novel approach using custom built invariants. SIAM J. Appl. Math. 64, 1156–1174 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Berchenko, I.A., Olver, P.J.: Symmetries of polynomials. J. Symb. Comp. 29, 485–514 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bleecker, D.: Gauge Theory and Variational Principles. Addison–Wesley Publ. Co., Reading (1981)

    MATH  Google Scholar 

  8. Blumenthal, L.M.: Theory and Applications of Distance Geometry. Oxford Univ. Press, Oxford (1953)

    MATH  Google Scholar 

  9. Boutin, M.: Numerically invariant signature curves. Int. J. Computer Vision 40, 235–248 (2000)

    Article  MATH  Google Scholar 

  10. Boutin, M.: On orbit dimensions under a simultaneous Lie group action on n copies of a manifold. J. Lie Theory 12, 191–203 (2002)

    MATH  MathSciNet  Google Scholar 

  11. Boutin, M.: Polygon recognition and symmetry detection. Found. Comput. Math. 3, 227–271 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bruckstein, A.M., Holt, R.J., Netravali, A.N., Richardson, T.J.: Invariant signatures for planar shape recognition under partial occlusion. CVGIP: Image Understanding 58, 49–65 (1993)

    Article  Google Scholar 

  13. Bruckstein, A.M., Netravali, A.N.: On differential invariants of planar curves and recognizing partially occluded planar shapes. Ann. Math. Artificial Intel. 13, 227–250 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bruckstein, A.M., Rivlin, E., Weiss, I.: Scale space semi-local invariants. Image Vision Comp. 15, 335–344 (1997)

    Article  Google Scholar 

  15. Bruckstein, A.M., Shaked, D.: Skew-symmetry detection via invariant signatures. Pattern Recognition 31, 181–192 (1998)

    Article  Google Scholar 

  16. Budd, C.J., Collins, C.B.: Symmetry based numerical methods for partial differential equations. In: Griffiths, D.F., Higham, D.J., Watson, G.A. (eds.) Numerical analysis 1997. Pitman Res. Notes Math., vol. 380, pp. 16–36. Longman, Harlow (1998)

    Google Scholar 

  17. Budd, C.J., Iserles, A.: Geometric integration: numerical solution of differential equations on manifolds. Phil. Trans. Roy. Soc. London A 357, 945–956 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Calabi, E., Olver, P.J., Tannenbaum, A.: Affine geometry, curve flows, and invariant numerical approximations. Adv. in Math. 124, 154–196 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Calabi, E., Olver, P.J., Shakiban, C., Tannenbaum, A., Haker, S.: Differential and numerically invariant signature curves applied to object recognition. Int. J. Computer Vision 26, 107–135 (1998)

    Article  Google Scholar 

  20. Cantwell, B.J.: Introduction to Symmetry Analysis. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  21. Carlsson, S., Mohr, R., Moons, T., Morin, L., Rothwell, C., Van Diest, M., Van Gool, L., Veillon, F., Zisserman, A.: Semi-local projective invariants for the recognition of smooth plane curves. Int. J. Comput. Vision 19, 211–236 (1996)

    Article  Google Scholar 

  22. Cartan, É.: La Méthode du Repère Mobile, la Théorie des Groupes Continus, et les Espaces Généralisés, Exposés de Géométrie, vol. 5. Hermann, Paris (1935)

    Google Scholar 

  23. Cartan, É.: La Théorie des Groupes Finis et Continus et la Géométrie Différentielle Traitées par la Méthode du Repère Mobile, Cahiers Scientifiques, vol. 18. Gauthier–Villars, Paris (1937)

    Google Scholar 

  24. Cartan, É.: Les sous-groupes des groupes continus de transformations. In: Oeuvres Complètes, part. II, vol. 2, pp. 719–856. Gauthier–Villars, Paris (1953)

    Google Scholar 

  25. Cartan, É.: Sur la structure des groupes infinis de transformations. In: Oeuvres Complètes, part. II, vol. 2, pp. 571–714. Gauthier–Villars, Paris (1953)

    Google Scholar 

  26. Cartan, É.: La structure des groupes infinis. In: Oeuvres Complètes, part. II, vol. 2, pp. 1335–1384. Gauthier–Villars, Paris (1953)

    Google Scholar 

  27. Channell, P.J., Scovel, C.: Symplectic integration of Hamiltonian systems. Nonlinearity 3, 231–259 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  28. Cheh, J., Olver, P.J., Pohjanpelto, J.: Maurer–Cartan equations for Lie symmetry pseudo-groups of differential equations. J. Math. Phys. (to appear)

    Google Scholar 

  29. Chern, S.-S.: Moving frames. In: Élie Cartan et les Mathématiques d’Aujourn’hui. Soc. Math. France, Astérisque, numéro hors série, pp. 67–77 (1985)

    Google Scholar 

  30. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 2nd edn. Springer, New York (1996)

    MATH  Google Scholar 

  31. David, D., Kamran, N., Levi, D., Winternitz, P.: Subalgebras of loop algebras and symmetries of the Kadomtsev-Petviashivili equation. Phys. Rev. Lett. 55, 2111–2113 (1985)

    Article  MathSciNet  Google Scholar 

  32. Deeley, R.J., Horwood, J.T., McLenaghan, R.G., Smirnov, R.G.: Theory of algebraic invariants of vector spaces of Killing tensors: methods for computing the fundamental invariants. Proc. Inst. Math. NAS Ukraine 50, 1079–1086 (2004)

    MathSciNet  Google Scholar 

  33. Dhooghe, P.F.: Multilocal invariants. In: Dillen, F., Komrakov, B., Simon, U., Van de Woestyne, I., Verstraelen, L. (eds.) Geometry and Topology of Submanifolds, vol. VIII, pp. 121–137. World Sci. Publishing, Singapore (1996)

    Google Scholar 

  34. Dorodnitsyn, V.A.: Transformation groups in net spaces. J. Sov. Math. 55, 1490–1517 (1991)

    Article  MATH  Google Scholar 

  35. Dorodnitsyn, V.A.: Finite difference models entirely inheriting continuous symmetry of original differential equations. Int. J. Mod. Phys. C 5, 723–734 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  36. Ehresmann, C.: Introduction à la théorie des structures infinitésimales et des pseudo-groupes de Lie. In: Géometrie Différentielle, Strasbourg. Colloq. Inter. du Centre Nat. de la Rech. Sci., pp. 97–110 (1953)

    Google Scholar 

  37. Fefferman, C., Graham, C.R.: Conformal invariants. In: Élie Cartan et les Mathématiques d’aujourd’hui, France, Paris. Astérisque, hors série. Soc. Math., pp. 95–116 (1985)

    Google Scholar 

  38. Faugeras, O.: Cartan’s moving frame method and its application to the geometry and evolution of curves in the euclidean, affine and projective planes. In: Mundy, J.L., Zisserman, A., Forsyth, D. (eds.) AICV 1993. LNCS, vol. 825, pp. 11–46. Springer, Heidelberg (1994)

    Google Scholar 

  39. Fels, M., Olver, P.J.: Moving coframes. I. A practical algorithm. Acta Appl. Math. 51, 161–213 (1998)

    Article  MathSciNet  Google Scholar 

  40. Fels, M., Olver, P.J.: Moving coframes. II. Regularization and theoretical foundations. Acta Appl. Math. 55, 127–208 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  41. Fuchs, D.B., Gabrielov, A.M., Gel’fand, I.M.: The Gauss–Bonnet theorem and Atiyah–Patodi–Singer functionals for the characteristic classes of foliations. Topology 15, 165–188 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  42. Green, M.L.: The moving frame, differential invariants and rigidity theorems for curves in homogeneous spaces. Duke Math. J. 45, 735–779 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  43. Greene, B.: The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory. W.W. Norton, New York (1999)

    MATH  Google Scholar 

  44. Griffiths, P.A.: On Cartan’s method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry. Duke Math. J. 41, 775–814 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  45. Griffiths, P.A.: Exterior Differential Systems and the Calculus of Variations. In: Progress in Math., vol. 25. Birkhäuser, Boston (1983)

    Google Scholar 

  46. Guggenheimer, H.W.: Differential Geometry. McGraw–Hill, New York (1963)

    MATH  Google Scholar 

  47. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer, New York (2002)

    MATH  Google Scholar 

  48. Hann, C.E., Hickman, M.S.: Projective curvature and integral invariants. Acta Appl. Math. 74, 177–193 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  49. Hilbert, D.: Theory of Algebraic Invariants. Cambridge Univ. Press, New York (1993)

    MATH  Google Scholar 

  50. Hubert, E.: Differential algebra for derivations with nontrivial commutation rules, preprint, INRIA Research Report 4972, Sophis Antipolis, France (2003)

    Google Scholar 

  51. Itskov, V.: Orbit Reduction of Exterior Differential Systems, Ph. D. Thesis, University of Minnesota (2002)

    Google Scholar 

  52. Jaegers, P.J.: Lie group invariant finite difference schemes for the neutron diffusion equation. Ph. D. Thesis, Los Alamos National Lab Report, LA–12791–T (1994)

    Google Scholar 

  53. Jensen, G.R.: Higher order contact of submanifolds of homogeneous spaces. Lecture Notes in Math., vol. 610. Springer, New York (1977)

    MATH  Google Scholar 

  54. Kemper, G., Boutin, M.: On reconstructing n-point configurations from the distribution of distances or areas. Adv. App. Math. 32, 709–735 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  55. Kichenassamy, S., Kumar, A., Olver, P.J., Tannenbaum, A., Yezzi, A.: Conformal curvature flows: from phase transitions to active vision. Arch. Rat. Mech. Anal. 134, 275–301 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  56. Killing, W.: Erweiterung der Begriffes der Invarianten von Transformationgruppen. Math. Ann. 35, 423–432 (1890)

    Article  MathSciNet  Google Scholar 

  57. Kim, P., Olver, P.J.: Geometric integration via multi-space. Regular and Chaotic Dynamics 9, 213–226 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  58. Kogan, I.A.: Inductive approach to moving frames and applications in classical invariant theory, Ph. D. Thesis, University of Minnesota (2000)

    Google Scholar 

  59. Kogan, I.A., Moreno Maza, M.: Computation of canonical forms for ternary cubics. In: Mora, T. (ed.) Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, The Association for Computing Machinery, New York. The Association for Computing Machinery, pp. 151–160 (2002)

    Google Scholar 

  60. Kogan, I.A.: Personal Communication (2004)

    Google Scholar 

  61. Kogan, I.A., Olver, P.J.: The invariant variational bicomplex. Contemp. Math. 285, 131–144 (2001)

    MathSciNet  Google Scholar 

  62. Kogan, I.A., Olver, P.J.: Invariant Euler-Lagrange equations and the invariant variational bicomplex. Acta Appl. Math. 76, 137–193 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  63. Kumpera, A.: Invariants différentiels d’un pseudogroupe de Lie. J. Diff. Geom. 10, 289–416 (1975)

    MATH  MathSciNet  Google Scholar 

  64. Kuranishi, M.: On the local theory of continuous infinite pseudo groups I. Nagoya Math. J. 15, 225–260 (1959)

    MathSciNet  Google Scholar 

  65. Lewis, D., Simo, J.C.: Conserving algorithms for the dynamics of Hamiltonian systems on Lie groups. J. Nonlin. Sci. 4, 253–299 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  66. Lie, S.: Über unendlichen kontinuierliche Gruppen. In: Christ. Forh. Aar., vol. 8, pp. 1–47 (1883); Also Gesammelte Abhandlungen, vol. 5, pp. 314–360. B.G. Teubner, Leipzig (1924)

    Google Scholar 

  67. Lie, S.: Über Integralinvarianten und ihre Verwertung für die Theorie der Differentialgleichungen. Leipz. Berichte 49, 369–410 (1897); Also Gesammelte Abhandlungen, vol. 6, pp. 664–701. B.G. Teubner, Leipzig (1927)

    Google Scholar 

  68. Mackenzie, K.: Lie Groupoids and Lie Algebroids in Differential Geometry. London Math. Soc. Lecture Notes, vol. 124. Cambridge University Press, Cambridge (1987)

    Book  MATH  Google Scholar 

  69. Mansfield, E.L.: Algorithms for symmetric differential systems. Found. Comput. Math. 1, 335–383 (2001)

    MATH  MathSciNet  Google Scholar 

  70. Mansfield, E.L.: Personal Communication (2003)

    Google Scholar 

  71. Marí Beffa, G.: Relative and absolute differential invariants for conformal curves. J. Lie Theory 13, 213–245 (2003)

    MATH  MathSciNet  Google Scholar 

  72. Marí–Beffa, G., Olver, P.J.: Differential invariants for parametrized projective surfaces. Commun. Anal. Geom. 7, 807–839 (1999)

    MATH  Google Scholar 

  73. McLachlan, R.I., Quispel, G.R.W.: Six lectures on the geometric integration of ODEs. In: DeVore, R., Iserles, A., Suli, E. (eds.) Foundations of Computational Mathematics. London Math. Soc. Lecture Note Series, vol. 284, pp. 155–210. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  74. McLachlan, R.I., Quispel, G.R.W.: What kinds of dynamics are there? Lie pseudogroups, dynamical systems and geometric integration. Nonlinearity 14, 1689–1705 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  75. McLenaghan, R.G., Smirnov, R.G., The, D.: An extension of the classical theory of algebraic invariants to pseudo-Riemannian geometry and Hamiltonian mechanics. J. Math. Phys. 45, 1079–1120 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  76. Medolaghi, P.: Classificazione delle equazioni alle derivate parziali del secondo ordine, che ammettono un gruppo infinito di trasformazioni puntuali. Ann. Mat. Pura Appl. 1(3), 229–263 (1898)

    Google Scholar 

  77. Menger, K.: Untersuchungen über allgemeine Metrik. Math. Ann. 100, 75–163 (1928)

    Article  MATH  MathSciNet  Google Scholar 

  78. Milne–Thompson, L.M.: The Calculus of Finite Differences. Macmilland and Co., Ltd., London (1951)

    Google Scholar 

  79. Moons, T., Pauwels, E., Van Gool, L., Oosterlinck, A.: Foundations of semi-differential invariants. Int. J. Comput. Vision 14, 25–48 (1995)

    Article  Google Scholar 

  80. Morozov, O.: Moving coframes and symmetries of differential equations. J. Phys. A 35, 2965–2977 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  81. Olver, P.J.: Classical invariant theory and the equivalence problem for particle Lagrangians. I. Binary Forms. Adv. in Math. 80, 39–77 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  82. Olver, P.J.: Applications of Lie Groups to Differential Equations, 2nd edn. Graduate Texts in Mathematics, vol. 107. Springer, New York (1993)

    MATH  Google Scholar 

  83. Olver, P.J.: Equivalence, Invariants, and Symmetry. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  84. Olver, P.J.: Classical Invariant Theory. London Math. Soc. Student Texts, vol. 44. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  85. Olver, P.J.: Moving frames and singularities of prolonged group actions. Selecta Math. 6, 41–77 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  86. Olver, P.J.: Joint invariant signatures. Found. Comput. Math. 1, 3–67 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  87. Olver, P.J.: On multivariate interpolation. University of Minnesota (2003)

    Google Scholar 

  88. Olver, P.J.: Geometric foundations of numerical algorithms and symmetry. Appl. Alg. Engin. Commun. Comput. 11, 417–436 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  89. Olver, P.J., Pohjanpelto, J.: Moving frames for pseudo–groups. I. The Maurer–Cartan forms, preprint, University of Minnesota (2004)

    Google Scholar 

  90. Olver, P.J., Pohjanpelto, J.: Moving frames for pseudo–groups. II. Differential invariants for submanifolds, preprint, University of Minnesota (2004)

    Google Scholar 

  91. Olver, P.J., Pohjanpelto, J.: Regularity of pseudogroup orbits. In: Gaeta, G. (ed.) Symmetry and Perturbation Theory (to appear)

    Google Scholar 

  92. Pauwels, E., Moons, T., Van Gool, L.J., Kempenaers, P., Oosterlinck, A.: Recognition of planar shapes under affine distortion. Int. J. Comput. Vision 14, 49–65 (1995)

    Article  Google Scholar 

  93. Powell, M.J.D.: Approximation theory and Methods. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  94. Robart, T., Kamran, N.: Sur la théorie locale des pseudogroupes de transformations continus infinis I. Math. Ann. 308, 593–613 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  95. Rund, H.: The Hamilton-Jacobi Theory in the Calculus of Variations. D. Van Nostrand Co. Ltd., Princeton (1966)

    MATH  Google Scholar 

  96. Salmon, R.: Lectures on Geophysical Fluid Dynamics. Oxford Univ. Press, Oxford (1998)

    Google Scholar 

  97. Shakiban, C., Lloyd, P.: Classification of signature curves using latent semantic analysis. University of St. Thomas (2004)

    Google Scholar 

  98. Shokin, Y.I.: The Method of Differential Approximation. Springer, New York (1983)

    MATH  Google Scholar 

  99. Singer, I.M., Sternberg, S.: The infinite groups of Lie and Cartan. Part I (the transitive groups). J. Analyse Math. 15, 1–114 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  100. Sokolov, V.V., Zhiber, A.V.: On the Darboux integrable hyperbolic equations. Phys. Lett. A 208, 303–308 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  101. Spencer, D.C.: Deformations of structures on manifolds defined by transitive pseudo-groups I, II. Ann. Math. 76, 306–445 (1962)

    Article  Google Scholar 

  102. Tresse, A.: Sur les invariants différentiels des groupes continus de transformations. Acta Math. 18, 1–88 (1894)

    Article  MathSciNet  Google Scholar 

  103. Tsujishita, T.: On variational bicomplexes associated to differential equations. Osaka J. Math. 19, 311–363 (1982)

    MATH  MathSciNet  Google Scholar 

  104. van Beckum, F.P.H., van Groesen, E.: Discretizations conserving energy and other constants of the motion. In: Proc. ICIAM 1987, Paris, pp. 17–35 (1987)

    Google Scholar 

  105. Van Gool, L., Brill, M.H., Barrett, E.B., Moons, T., Pauwels, E.: Semi-differential invariants for nonplanar curves. In: Mundy, J.L., Zisserman, A. (eds.) Geometric Invariance in Computer Vision, pp. 293–309. MIT Press, Cambridge (1992)

    Google Scholar 

  106. Van Gool, L., Moons, T., Pauwels, E., Oosterlinck, A.: Semi-differential invariants. In: Mundy, J.L., Zisserman, A. (eds.) Geometric Invariance in Computer Vision, pp. 157–192. MIT Press, Cambridge (1992)

    Google Scholar 

  107. Weinstein, A.: Groupoids: unifying internal and external symmetry. A tour through some examples. Contemp. Math. 282, 1–19 (2001)

    Google Scholar 

  108. Weyl, H.: Classical Groups. Princeton Univ. Press, Princeton (1946)

    MATH  Google Scholar 

  109. Yezzi, A., Kichenassamy, S., Kumar, A., Olver, P.J., Tannenbaum, A.: A geometric snake model for segmentation of medical imagery. IEEE Trans. Medical Imaging 16, 199–209 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Olver, P.J. (2005). A Survey of Moving Frames. In: Li, H., Olver, P.J., Sommer, G. (eds) Computer Algebra and Geometric Algebra with Applications. IWMM GIAE 2004 2004. Lecture Notes in Computer Science, vol 3519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499251_11

Download citation

  • DOI: https://doi.org/10.1007/11499251_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26296-1

  • Online ISBN: 978-3-540-32119-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics