Skip to main content

Cancer Prediction Using Diversity-Based Ensemble Genetic Programming

  • Conference paper
Modeling Decisions for Artificial Intelligence (MDAI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3558))

Abstract

Combining a set of classifiers has often been exploited to improve the classification performance. Accurate as well as diverse base classifiers are prerequisite to construct a good ensemble classifier. Therefore, estimating diversity among classifiers has been widely investigated. This paper presents an ensemble approach that combines a set of diverse rules obtained by genetic programming. Genetic programming generates interpretable classification rules, and diversity among them is directly estimated. Finally, several diverse rules are combined by a fusion method to generate a final decision. The proposed method has been applied to cancer classification using gene expression profiles, which is one of the important issues in bioinformatics. Experiments on several popular cancer datasets have demonstrated the usability of the method. High performance of the proposed method has been obtained, and the accuracy has increased by diversity among the base classification rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koza, J.: Genetic programming. Encyclopedia of Computer Science and Technology 39, 29–43 (1998)

    Google Scholar 

  2. Bruke, E., et al.: Diversity in genetic programming: An analysis of measures and correlation with fitness. IEEE Trans. Evolutionary Computation 8(1), 47–62 (2004)

    Article  Google Scholar 

  3. Kuncheva, L.: A theoretical study on six classifier fusion strategies. IEEE Trans. Pattern Analysis and Machine Intelligence 24(2), 281–286 (2002)

    Article  Google Scholar 

  4. Bryll, R., et al.: Attribute bagging: Improving accuracy of classifier ensembles by using random feature subsets. Pattern Recognition 36(6), 1291–1302 (2003)

    Article  MATH  Google Scholar 

  5. Hansen, L., Salamon, P.: Neural network ensembles. IEEE Trans. Pattern Analysis and Machine Intelligence 12(10), 993–1001 (1990)

    Article  Google Scholar 

  6. Opitz, D., Maclin, R.: Popular ensemble methods: An empirical study. J. of Artificial Intelligence Research 11, 160–198 (1999)

    Google Scholar 

  7. Zhou, Z., et al.: Ensembling neural networks: Many could be better than all. Artificial Intelligence 137(1-2), 239–263 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ruta, D., Gabrys, B.: Classifier selection for majority voting. Information Fusion (2004)

    Google Scholar 

  9. Brown, G., et al.: Diversity creation methods: A survey and categorization. Information Fusion 6(1), 5–20 (2005)

    Article  Google Scholar 

  10. Bakker, B., Heskes, T.: Clustering ensembles of neural network models. Neural Networks 16(2), 261–269 (2003)

    Article  Google Scholar 

  11. Tan, A., Gilbert, D.: Ensemble machine learning on gene expression data for cancer classification. Applied Bioinformatics 2(3), 75–83 (2003)

    Google Scholar 

  12. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  13. Freund, Y., Schapire, R.: Experiments with a new boosting algorithm. In: Proc. the 13th Int. Conf. Machine Learning, pp. 148–156 (1996)

    Google Scholar 

  14. Breiman, L.: Bias, variance, and arcing classifiers, Tech. Rep. 460, UC-Berkeley (1996)

    Google Scholar 

  15. Peterson, C., Ringner, M.: Analyzing tumor gene expression profiles. Artificial Intelligence in Medicine 28(1), 59–74 (2003)

    Article  Google Scholar 

  16. Hong, J.-H., Cho, S.-B.: Lymphoma cancer classification using genetic programming with SNR features. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 78–88. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Wang, J., Zhang, K.: Finding similar consensus between trees: An algorithm and a distance hierarchy. Pattern Recognition 34(1), 127–137 (2001)

    Article  MATH  Google Scholar 

  18. Xiong, M., et al.: Feature selection in gene expression-based tumor classification. Molecular Genetics and Metabolism 73(3), 239–247 (2001)

    Article  Google Scholar 

  19. Brameier, M., Banzhaf, W.: A comparison of linear genetic programming and neural networks in medical data mining. IEEE Trans. Evolutionary Computation 5(1), 17–26 (2001)

    Article  Google Scholar 

  20. Zhang, Y., Bhattacharyya, S.: Genetic programming in classifying large-scale data: An ensemble method. Information Sciences 163(1-3), 85–101 (2004)

    Article  Google Scholar 

  21. Alizadeh, A., et al.: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403(6769), 503–511 (2000)

    Article  Google Scholar 

  22. Gordon, G., et al.: Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Research 62(17), 4963–4967 (2002)

    Google Scholar 

  23. Petricoin III, E., et al.: Use of proteomic patterns in serum to identify ovarian cancer. The Lancet 359(9306), 572–577 (2002)

    Article  Google Scholar 

  24. Shipp, M., et al.: Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Medicine 8(1), 68–74 (2002)

    Article  Google Scholar 

  25. Ando, T., et al.: Selection of causal gene sets for lymphoma prognostication from expression profiling and construction of prognostic fuzzy neural network models. J. Bioscience and Bioengineering 96(2), 161–167 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hong, JH., Cho, SB. (2005). Cancer Prediction Using Diversity-Based Ensemble Genetic Programming. In: Torra, V., Narukawa, Y., Miyamoto, S. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2005. Lecture Notes in Computer Science(), vol 3558. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11526018_29

Download citation

  • DOI: https://doi.org/10.1007/11526018_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27871-9

  • Online ISBN: 978-3-540-31883-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics