Skip to main content

Gene Network: Model, Dynamics and Simulation

  • Conference paper
Computing and Combinatorics (COCOON 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3595))

Included in the following conference series:

Abstract

A gene network is modeled as a dynamical random graph whose vertices and edges represent genes and gene-gene interactions, respectively. The network grows through three biological mechanisms: (1) gene duplication and loss; (2) gene-gene interaction adding and removing; and (3) genome duplication. The evolutionary dynamics of gene networks is discussed. It is shown that: (1) the vertex degree distribution (i.e., the distribution of the number of the gene-gene interactions per gene) always follows power laws and the power law exponents may be changed by genome duplications; and (2) the network degree distribution (i.e., the distribution of the total number of the gene-gene interactions in the network) has a complex behavior: If no genome duplication occurs, it follows a power law. If a genome duplication occurs, it may be away from the power law state. However, after a sufficient long evolutionary time, it approaches to a power law tail. The dynamics is confirmed by computer simulations. By allowing genome duplications, our model and dynamics (describing the dynamic behavior of gene networks) are more realistic than other previous ones (containing only static behavior).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kitano, H.: Systems Biology: A Brief Overview. Science 295, 1662–1664 (2002)

    Article  Google Scholar 

  2. Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)

    Article  Google Scholar 

  3. Oltvai, Z., Barabási, A.-L.: Life’s complexity pyramid. Science 298, 763–764 (2002)

    Article  Google Scholar 

  4. Albert, B., Barabási, A.-L.: Statistical mechanics of complex networks. Review of Modern Physics 74, 47–97 (2002)

    Article  MATH  Google Scholar 

  5. Sali, S.: Functional links between proteins. Nature 402, 23–26 (1999)

    Article  Google Scholar 

  6. Wagner, A.: The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Molecular Biology and Evolution 18, 1283–1292 (2001)

    Article  Google Scholar 

  7. Wagner, A.: How large protein interaction networks evolve. Proc. R. Soc. Lond. B 270, 457–466 (2003)

    Article  Google Scholar 

  8. Uetz, P., Giot, L., et al.: A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2001)

    Google Scholar 

  9. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.-L.: The largescale organization of metabolic networks. Nature 407, 651–654 (2000)

    Article  Google Scholar 

  10. Ravasz, E., Somera, A., Mongru, D.A., Oltvai, Z., Barabási, A.-L.: Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002)

    Article  Google Scholar 

  11. Barabási, A., Albert, A.-L.: Emergence of scaling in randomnetworks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  12. Azevedo, R., Leroi, A.M.: A power law for cells. PNAS 98, 5699–5704 (2001)

    Article  Google Scholar 

  13. Chung, F., Lu, L., Dewey, T.G., Galas, D.J.: DuplicationModels for Biological Networks. Journal of Computational Biology 10, 677–687 (2002)

    Article  Google Scholar 

  14. Albert, R., Jeong, H., Barabási, A.-L.: Diameter of the World Wide Web. Nature 401, 130–131 (1999)

    Article  Google Scholar 

  15. Chung, F., Lu, L.: The average distances in random graphs with given expected degrees. PNAS 99, 15879–15882 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Givan, M., Newman, E.J.: Community structure in social and biological networks. PNAS 99, 7821–7826 (2002)

    Article  Google Scholar 

  17. Watts, D.J., Strogatz, H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  18. Ohno, S.: Evolution by Gene Duplication. Springer, New York (1970)

    Book  Google Scholar 

  19. Bhan, A., Galas, D.J., Dewery, T.G.: A duplication growth model of gene expression network. Bioinformatics 18, 1486–1493 (2002)

    Article  Google Scholar 

  20. Wolfe, K., Shields, D.: Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387, 708–713 (1997)

    Article  Google Scholar 

  21. Stillman, B.: Genomic Views of Genome Duplication. Science 294, 2301–2304 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, S., Gu, X. (2005). Gene Network: Model, Dynamics and Simulation. In: Wang, L. (eds) Computing and Combinatorics. COCOON 2005. Lecture Notes in Computer Science, vol 3595. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11533719_4

Download citation

  • DOI: https://doi.org/10.1007/11533719_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28061-3

  • Online ISBN: 978-3-540-31806-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics