Skip to main content

Generation of Glyphs for Conveying Complex Information, with Application to Protein Representations

  • Conference paper
Smart Graphics (SG 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3638))

Included in the following conference series:

Abstract

We present a method to generate glyphs which convey complex information in graphical form. A glyph has a linear geometry which is specified using geometric operations, each represented by characters nested in a string. This format allows several glyph strings to be concatenated, resulting in more complex geometries. We explore automatic generation of a large number of glyphs using a genetic algorithm. To measure the visual distinctness between two glyph geometries, we use the iterative closest point algorithm. We apply these methods to create two different types of representations for biological proteins, transforming the rich data describing their various characteristics into graphical form. The representations are automatically built from a finite set of glyphs, which have been created manually or using the genetic algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt, H., Guibas, L.J.: Discrete Geometric Shapes: Matching, Interpolation, and Approximation. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 121–153. Elsevier Science Publishers, Amsterdam (1999)

    Google Scholar 

  2. Alfarano, C., Andrade, C.E., Anthony, K., Bahroos, N., Bajec, M.: The Biomolecular Interaction Network Database and related tools 2005 update. Nucleic Acids Res. 33(Database Issue), G418–G424 (2005)

    Article  Google Scholar 

  3. Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, L., Eddy, S.R., Griffiths-Jones, S., Howe, K.L., Marshall, M., Sonnhammer, E.L.L.: The Pfam Protein Families Database. Nucleic Acids Research 30(1), 276–280 (2002)

    Article  Google Scholar 

  4. Battiato, S., Gallo, G., Nicotra, S.: Glyph Representation of Directional Texture Properties. Journal of WSCG 10(1-3), 48–54 (2002)

    Google Scholar 

  5. Bergman, L.D., Richardson, J.S., Richardson, D.C., Brooks, J.F.P.: VIEW - an exploratory molecular visualization system with user-definable interaction sequences. In: Proceedings of SIGGRAPH, vol. 71, pp. 117–126 (1993)

    Google Scholar 

  6. Besl, P.J., MacKay, N.D.: A Method for Registration of 3-D Shapes. IEEE Transactions on Pattern Analysis and Machine Inteligence 14, 239–256 (1992)

    Article  Google Scholar 

  7. Fasulo, D.: An Analysis of Recent Work on Clustering Algorithms. In: Department of Computer Science & Engineering, University of Washington (1999)

    Google Scholar 

  8. The Gene Ontology Consortium: Gene Ontology: tool for the unification of biology. Nature Genetics 25, 25–29 (2000)

    Google Scholar 

  9. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  10. Hoffmann, C.M.: Geometric and solid modeling: an introduction. Morgan Kaufmann Publishers Inc., San Francisco (1989)

    Google Scholar 

  11. Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  12. Lindenmayer, A.: Mathematical models for cellular interaction in development, Parts I and II. Journal of Theoretical Biology 18, 280–315 (1968)

    Article  Google Scholar 

  13. Marchler-Bauer, A., Panchenko, A.R., Shoemaker, B.A., Thiessen, P.A., Geer, L.Y., Bryant, S.H.: CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Research 30(1), 281–283 (2002)

    Article  Google Scholar 

  14. Martz, E.: 3D Molecular Visualization with Protein Explorer. In: Krawetz, S.A., Womble, D.D. (eds.) Introduction to Bioinformatics, pp. 565–586. Humana Press, Totowa (2003)

    Chapter  Google Scholar 

  15. Michalickova, K., Bader, G.D., Dumontier, M., Lieu, H., Betel, D., Isserlin, R., Hogue, C.W.: Seqhound: biological sequence and structure database as a platform for bioinformatics research. BMC Bioinformatics 3(1), 32–45 (2002)

    Article  Google Scholar 

  16. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540 (1995)

    Google Scholar 

  17. Prusinkiewicz, P., Hanan, J.: Visualization of botanical structures and processes using parametric L-systems. In: Scientific Visualization and Graphics Simulation, pp. 183–201. J. Wiley & Sons, Chichester (1990)

    Google Scholar 

  18. Renner, G., Ekárt, A.: Genetic algorithms in computer aided design. Computer-Aided Design 35(8), 709–726 (2003)

    Article  Google Scholar 

  19. Ribarsky, W., Ayers, E., Eble, J., Mukherjea, S.: Glyphmaker: Creating customized visualizations of complex data. IEEE Computer 27(7), 57–64 (1994)

    Google Scholar 

  20. Rose, S.J., Wong, P.C.: DriftWeed: a visual metaphor for interactive analysis of multivariate data. In: Visual Data Exploration and Analysis VII (Proceedings of SPIE), vol. 3960, pp. 114–121 (2000)

    Google Scholar 

  21. Schultz, J., Copley, R.R., Doerks, T., Ponting, C.P., Bork, P.: SMART: A Web-based tool for the study of genetically mobile domains. Nucleic Acids Res. 28, 231–234 (2000)

    Article  Google Scholar 

  22. Sims, K.: Evolving Virtual Creatures. Computer Graphics, 15–22 (1994)

    Google Scholar 

  23. Voorhees, E.M.: Implementing Agglomerative Hierarchic Clustering Algorithms for use in Document Retrieval. Information Processing & Management 22(6), 465–476 (1986)

    Article  Google Scholar 

  24. Wang, Y., Geer, L.Y., Chappey, C., Kans, J.A., Bryant, S.H.: Cn3D: sequence and structure views for Entrez. Trends Biochem Sci. 25(6), 300–302 (2000)

    Article  Google Scholar 

  25. Wittenbrink, C.M., Pang, A.T., Lodha, S.K.: Glyphs for Visualizing Uncertainty in Vector Fields. Proceedings of IEEE Transactions on Visualization and Computer Graphics 2(3), 266–279 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pintilie, G.D., Tuekam, B., Hogue, C.W.V. (2005). Generation of Glyphs for Conveying Complex Information, with Application to Protein Representations. In: Butz, A., Fisher, B., Krüger, A., Olivier, P. (eds) Smart Graphics. SG 2005. Lecture Notes in Computer Science, vol 3638. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11536482_8

Download citation

  • DOI: https://doi.org/10.1007/11536482_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28179-5

  • Online ISBN: 978-3-540-31905-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics