Skip to main content

Complexity and Intensionality in a Type-1 Framework for Computable Analysis

  • Conference paper
Computer Science Logic (CSL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3634))

Included in the following conference series:

Abstract

This paper describes a type-1 framework for computable analysis designed to facilitate efficient implementations and discusses properties that have not been well studied before for type-1 approaches: the introduction of complexity measures for type-1 representations of real functions, and ways to define intensional functions, i.e. functions that may return different real numbers for the same real argument given in different representations.

This approach has been used in a recently developed package for exact real number computations, which achieves performance comparable to the performance of machine precision floating point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger, U., Oliva, P.: Modified Bar Recursion and Classical Dependent Choice. Lecture Notes in Logic 20, 89–107 (2005)

    MathSciNet  Google Scholar 

  2. Brattka, V.: Recursive characterisation of computable real-valued functions and relations. Theoret. Comput. Sci. 162, 47–77 (1996)

    Article  MathSciNet  Google Scholar 

  3. Briggs, K.: Implementing exact real arithmetic in python, C++ and C (to appear in Journal of theoretical computer science), See also http://more.btexact.com/people/briggsk2/xrc.html

  4. Buss, S.R., Kapron, B.M.: Resource-bounded continuity and sequentiality for type-two functionals. ACM Transactions on Computational Logic 3(3), 402–417 (7/2002)

    Article  MathSciNet  Google Scholar 

  5. Cook, S.A., Kapron, B.M.: Characterizations of the basic feasible functionals of finite type. In: Buss, S., Scott, P. (eds.) Feasible Mathematics: A Mathematical Sciences Institute Workshop, Birkhauser, pp. 71–96 (1990)

    Google Scholar 

  6. Cook, Stephen, A.: Computability and complexity of higher type functions. In: Logic from computer science, Berkeley, CA, 1989. Math. Sci. Res. Inst. Publ, vol. 21, pp. 51–72. Springer, New York (1992)

    Google Scholar 

  7. Edalat, A.: Exact Real Number Computation Using Linear Fractional Transformations. Final Report on EPSRC grant GR/L43077/01, Available at http://www.doc.ic.ac.uk/~ae/exact-computation/exactarithmeticfinal.ps.gz

  8. Edalat, A., Sünderhauf, P.: A domain-theoretic approach to computability on the real line. Theoret. Comput. Sci. 210(1), 73–98 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Escardo, M., Hofmann, M., Streicher, T.: On the non-sequential nature of the intervaldomain model of real-number computation. Math. Struct. in Comp. Science 14, 803–814 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gödel, K.: Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica 12, 280–287 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  11. Grzegorczyk, A.: On the definitions of computable real continuous functions. Fundamenta Matematicae 44, 61–67 (1957)

    MATH  MathSciNet  Google Scholar 

  12. Hinman, P.G.: Recursion-theoretic hierarchies. Springer, Heidelberg (1978)

    MATH  Google Scholar 

  13. Howard, W.A.: Hereditarily majorizable functionals of finite type. In: Troelstra (ed.) Metamathematical investigation of intuitionistic arithmetic and analysis, vol. 344, pp. 454–461. Springer LNM, Heidelberg (1973)

    Google Scholar 

  14. Kapron, B.M., Cook, S.A.: A new characterization of type-2 feasibility. SIAM J. Comput. 25(1), 117–132 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kleene, S.C.: Countable Functionals. In: Heyting, A. (ed.) Constructivity in Mathematics, pp. 81–100. North-Holland, Amsterdam (1959)

    Google Scholar 

  16. Kleene, S.C.: Recursive Functionals and Quantifiers of Finite Types I. Trans. Amer. Math. Soc. 91, 1–52 (1959)

    MATH  MathSciNet  Google Scholar 

  17. Ko, K.-I.: Complexity theory of real functions. Birkhäuser, Boston-Basel-Berlin (1991)

    Google Scholar 

  18. Kohlenbach, U.: Theory of majorizable and continuous functionals and their use for the extraction of bounds from non-constructive proofs: effective moduli of uniqueness for best approximations from ineffective proofs of uniqueness (german). PhD Dissertation, Frankfurt (1990)

    Google Scholar 

  19. Kreisel, G.: Interpretation of analysis by means of functionals of finite type. In: Heyting, A. (ed.) Constructivity in Mathematics, pp. 101–128. North-Holland, Amsterdam (1959)

    Google Scholar 

  20. Lambov, B.: A two-layer approach to the computability and complexity of real functions. Computability and complexity in analysis (Cincinnati, 2003), 279–302, Informatik Berichte, 302, Fernuniversität Hagen (8/2003), See also http://www.brics.dk/~barnie/RealLib/

  21. Lambov, B.: RealLib, an Efficient Implementation of Exact Real Arithmetic (submitted), Available at http://www.brics.dk/~barnie/RealPractical.pdf

  22. Lambov, B.: RealLib3 Manual, Available at http://www.brics.dk/~barnie/RealLib/

  23. Mosses, P.D.: Action Semantics. Cambridge Tracts in Theoretical Computer Science, vol. 26. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  24. Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer, Heidelberg (1989)

    MATH  Google Scholar 

  25. Marcial-Romero, J.R., Escardo, M.: Semantics of a sequential language for exact realnumber computation. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, pp. 426–435 (7/2004)

    Google Scholar 

  26. Müller, N.: The iRRAM: Exact arithmetic in C++. In: Blank, J., Brattka, V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, p. 222. Springer, Heidelberg (2001), See also http://www.informatik.uni-trier.de/iRRAM/

    Chapter  Google Scholar 

  27. Schwichtenberg, H.: Constructive Analysis with Witnesses (Marktoberdorf 2003) (2003), Available at http://www.mathematik.uni-muenchen.de/~schwicht/papers/mod03/modart03.ps

  28. Skordev, D.: Characterization of the computable real numbers by means of primitive recursive functions. In: Blank, J., Brattka, V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 296–309. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  29. Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  30. Yap, Chee: Towards Exact Geometric Computation. Computational Geometry: Theory and application, 3-23 (9/1997), See also http://www.cs.nyu.edu/exact/core/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lambov, B. (2005). Complexity and Intensionality in a Type-1 Framework for Computable Analysis. In: Ong, L. (eds) Computer Science Logic. CSL 2005. Lecture Notes in Computer Science, vol 3634. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538363_31

Download citation

  • DOI: https://doi.org/10.1007/11538363_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28231-0

  • Online ISBN: 978-3-540-31897-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics