Skip to main content

A General fMRI Linear Convolution Model Based Dynamic Characteristic

  • Conference paper
Advances in Natural Computation (ICNC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3610))

Included in the following conference series:

  • 1989 Accesses

Abstract

General linear model (GLM) is a most popularly method of functional magnetic imaging (fMRI) data analysis. The key of this model is how to constitute the design-matrix to model the interesting effects better and separate noises. In this paper, the new general linear convolution model is proposed by introducing dynamic characteristic function as hemodynamic response function for the processing of the fMRI data. The method is implemented by a new dynamic function convolving with stimulus pattern as design-matrix to detect brain active signal. The efficiency of the new method is confirmed by its application into the real-fMRI data. Finally, real- fMRI tests showed that the excited areas evoked by a visual stimuli are mainly in the region of the primary visual cortex.

Supported by NSFC#90208003 and #30200059, TRAPOYT, the 973 Project No. 2003CB716106.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belliveau, J.W., Kennedy, D.N., Mckinstryet, R.C., et al.: Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254, 716–719 (1991)

    Article  Google Scholar 

  2. Chen, H., Yao, D., Liu, Z.: Analysis of the fMRI BOLD Response of Spatial Visual. Brain Topography 17, 39–46 (2004)

    Article  MATH  Google Scholar 

  3. Chen, H., Yao, D.: Composite ICA algorithm and the application in localization of brain activities. Neurocomputing 56, 429–434 (2004)

    Article  Google Scholar 

  4. Chen, H., Yao, D.: Discussion on the choice of separation component in fMRI data analysis by Spatial Independent Component analysis. Magnetic Resonance Imaging 22, 827–833 (2004)

    Article  Google Scholar 

  5. Chen, H., Yao, D., Zhuo, Y., Chen, L.: Analysis of fMRI Data by Blind Separation into Independent temporal Component. Brain topography 15, 223–232 (2003)

    Article  Google Scholar 

  6. Friston, K.J., Frith, C.D., Frackowiak, R.S.J., et al.: Characterizing Dynamic Brain Responses with fMRI: A Multivariate Approach. NeuroImage 2(2), 166–172 (1995)

    Article  Google Scholar 

  7. Friston, K.J., Holmes, A.P., Poline, J.B., et al.: Analysis of fMRI Time-Series Revisited. NeuroImage 2(1), 45–53 (1995)

    Article  Google Scholar 

  8. Friston, K.J., Mechelli, A., Turner, R., et al.: Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics. NeuroImage 12(4), 466–477 (2000)

    Article  Google Scholar 

  9. Friston, K.J., Fletcher, P., Josephs, O., et al.: Event-Related fMRI: Characterizing Differential Responses. NeuroImage 7(1), 30–40 (1998)

    Article  Google Scholar 

  10. Worsley, K.J., Friston, K.J.: Analysis of fMRI Time-Series Revisited—Again. NeuroImage 2(1), 173–181 (1995)

    Article  Google Scholar 

  11. Büchel, C., Holmes, A.P., Rees, G., et al.: Characterizing Stimulus– response Functions Using Nonlinear Regressors in Parametric fMRI Experiments. NeuroImage 8(2), 140–148 (1998)

    Article  Google Scholar 

  12. Vazquez, A.L., Noll, D.C.: Nonlinear Aspects of the BOLD Response in Functional MRI. NeuroImage 7, 108–118 (1998)

    Article  Google Scholar 

  13. Bandettini, P.A., Birn, R.M., Kelley, D., et al.: Dynamic nonlinearities in BOLD contrast: neuronal or hemodynamic? International Congress Series 1235, 73–85 (2002)

    Article  Google Scholar 

  14. Riera, J.J., Watanabe, J., Kazuki, I., et al.: A state-space model of the hemodynamic approach: nonlinear filtering of BOLD signals. NeuroImage 21(2), 547–567 (2004)

    Article  Google Scholar 

  15. Chen, H., Yao, D., Liu, Z.: A comparison of Gamma and Gaussian dynamic convolution models of the fMRI BOLD response. Magnetic Resonance Imaging 23, 83–88 (2005)

    Article  Google Scholar 

  16. Chen, H., Yao, D., Yang, L.: An extend Gamma dynamic model of functional MRI BOLD response. Neurocomputing 61, 395–400 (2004)

    Article  Google Scholar 

  17. Chen, H., Yao, D., Chen, L.: A New Method for Detecting Brain Activities from fMRI Dataset. Neurocomputing 48, 1047–1052 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yuan, H., Li, H., Zhang, Z., Qiu, J. (2005). A General fMRI Linear Convolution Model Based Dynamic Characteristic. In: Wang, L., Chen, K., Ong, Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, vol 3610. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539087_126

Download citation

  • DOI: https://doi.org/10.1007/11539087_126

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28323-2

  • Online ISBN: 978-3-540-31853-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics