Skip to main content

Knot Theory, Jones Polynomial and Quantum Computing

  • Conference paper
Mathematical Foundations of Computer Science 2005 (MFCS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3618))

Abstract

Knot theory emerged in the nineteenth century for needs of physics and chemistry as these needs were understood those days. After that the interest of physicists and chemists was lost for about a century. Nowadays knot theory has made a comeback. Knot theory and other areas of topology are no more considered as abstract areas of classical mathematics remote from anything of practical interest. They have made deep impact on quantum field theory, quantum computation and complexity of computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, S.: Guest column: NP-complete problems and physical reality. ACM SIGACT News 36(1), 30–52 (2005)

    Article  Google Scholar 

  2. Adams, C.C.: The Knot Book. An Elementary Introduction to the Mathematical Theory of Knots. American Mathematical Society, Providence (1994)

    MATH  Google Scholar 

  3. Akutsu, Y., Deguchi, T., Ohtsuki, T.: Invariants of colored links. Journal of Knot Theory Ramifications 1(2), 161–184 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aharonov, D., Kitaev, A., Nisan, N.: Quantum Circuits with Mixed States

    Google Scholar 

  5. Aharonov, D., Jones, V., Landau, Z.: On the quantum algorithm for approximating the Jones polynomial. Unpublished (2005)

    Google Scholar 

  6. Alexander, J.W.: Topological invariants of knots and links. Transactions of American Mathematical Society 30, 275–306 (1928)

    Article  MATH  Google Scholar 

  7. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses and generalizations. In: Proc. IEEE FOCS 1998, pp. 332–341 (1998) (Also quant-ph/9802062)

    Google Scholar 

  8. Ambainis, A., Kikusts, A., Valdats, M.: On the class of languages recognizable by 1-way quantum finite automata

    Google Scholar 

  9. Atiyah, M.F.: New invariants of three and four dimensional manifolds. In: Proc. Symp. Pure Math.,The mathematical heritage of Herman Weyl, vol. 48, American Mathematical Society, Providence (1988)

    Google Scholar 

  10. Bennett, C., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing. SIAM Journal on Computing 26(5), 1510–1523 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM Journal on Computing 26, 1411–1473 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Brodsky, A., Pippenger, N.: Characterizations of 1-way quantum finite automata (quant-ph/9903014)

    Google Scholar 

  13. Freedman, M.H., Kitaev, A., Wang, Z.: Simulation of topological field theories by quantum computers. Communications in Mathematical Physics 227(3), 587–603 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Freedman, M.H., Kitaev, A., Larsen, M.J., Wang, Z.: Topological quantum computation (quant-ph/0101025)

    Google Scholar 

  15. Jones, V.F.R.: On knot invariants related to some statistical mechanical models. Pacific Journal of Mathematics 137(2), 311–334 (1989)

    MATH  MathSciNet  Google Scholar 

  16. Jones, V.F.R.: Knot theory and statistical mechanics. Scientific American 263(5), 98–103 (1990)

    Article  MathSciNet  Google Scholar 

  17. Jones, V.F.R., Reznikoff, S.A.: Hilbert space representations of the annular Temperley-Lieb algebra, http://math.berkeley.edu/vfr/hilbertannular.ps

  18. Kauffman, L.H.: State models and the Jones polynomial. Topology 26(3), 395–407 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kauffman, L.H.: New invariants in the theory of knots. American Mathematical Monthly 95(3), 195–242 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kauffman, L.H.: Knot Automata. In: Proc. ISMVL, pp. 328–333 (1994)

    Google Scholar 

  21. Kauffman, L.H.: Review of ”Knots” by Alexei Sossinsky, Harvard University Press (2002), ISBN 0-674-00944-4, http://arxiv.org/abs/math.HO/0312168

  22. Kauffman, L.H., Lins, S.L.: Temperley-Lieb recoupling theory and invariant of 3manifolds. Princeton University Press, Princeton (1994)

    Google Scholar 

  23. Kauffman, L.H., Saleur, H.: Free fermions and the Alexander-Conway polynomial. Comm. Math. Phys. 141(2), 293–327 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kirkman, T.P.: The enumeration, description and construction of knots with fewer than 10 crossings. Transactions R.Soc. Edinburgh, vol. 32, pp. 281–309 (1883)

    Google Scholar 

  25. Levin, L.A.: Polynomial time and extravagant machines, in the tale of one-way machines. Problems of Information Transmission 39(1), 92–103 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Little, C.N.: Non-alternate + - knots. Transactions R.Soc. Edinburgh 39, 771–778 (1900)

    Google Scholar 

  27. Murakami, H., Murakami, J.: The colored Jones polynomials and the simplicial volume of a knot. Acta Mathematica 186, 85–104 (2001), Also http://arxiv.org/abs/math/9905075

    Article  MATH  MathSciNet  Google Scholar 

  28. Werner, K., Reidemeister, F.: Knotentheorie. Eregebnisse der Mathematik und ihrer Grenzgebiete (Alte Folge 0, Band 1, Heft 1). Springer, Berlin (1974) (reprint)

    Google Scholar 

  29. Simon, D.: On the power of quantum computation. In: Proc. IEEE FOCS, pp. 116–123 (1994)

    Google Scholar 

  30. Sossinsky, A.: Knots. Mathematics with a Twist. Harvard University Press, Cambridge (2002)

    Google Scholar 

  31. Tait, P.G.: On knots I, II, III. In: Scientific papers, vol. 1, pp. 273–347. Cambridge University Press, London (1898)

    Google Scholar 

  32. Thomson, W.: Hydrodynamics. Transactions R.Soc. Edinburgh 6, 94–105 (1867)

    Google Scholar 

  33. Thomson, W.: On vortex motion. Transactions R.Soc. Edinburgh 25, 217–260 (1869)

    Google Scholar 

  34. Thurston, W.P.: The Geometry and Topology of Three-Manifolds. Princeton University Lecture Notes (1977)

    Google Scholar 

  35. Thurston, W.P.: Three-Dimensional Geometry and Topology. Princeton Lecture Notes, vol. 1 (1997)

    Google Scholar 

  36. Vassiliev, V.A.: Cohomology of Knot Spaces. In: Arnold, V.I. (ed.) Theory of Singularities and Its Applications, pp. 23–69. Amer. Math. Soc, Providence (1990)

    Google Scholar 

  37. Witten, E.: Quantum field theory and the Jones polynomial. Communications in Mathematical Physics 121(3), 351–399 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Freivalds, R. (2005). Knot Theory, Jones Polynomial and Quantum Computing. In: Jȩdrzejowicz, J., Szepietowski, A. (eds) Mathematical Foundations of Computer Science 2005. MFCS 2005. Lecture Notes in Computer Science, vol 3618. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11549345_2

Download citation

  • DOI: https://doi.org/10.1007/11549345_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28702-5

  • Online ISBN: 978-3-540-31867-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics