Skip to main content

A Gradient Rule for the Plasticity of a Neuron’s Intrinsic Excitability

  • Conference paper
Artificial Neural Networks: Biological Inspirations – ICANN 2005 (ICANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3696))

Included in the following conference series:

Abstract

While synaptic learning mechanisms have always been a core topic of neural computation research, there has been relatively little work on intrinsic learning processes, which change a neuron’s excitability. Here, we study a single, continuous activation model neuron and derive a gradient rule for the intrinsic plasticity based on information theory that allows the neuron to bring its firing rate distribution into an approximately exponential regime, as observed in visual cortical neurons. In simulations, we show that the rule works efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Desai, N.S., Rutherford, L.C., Turrigiano, G.G.: Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nature Neuroscience 2, 515–520 (1999)

    Article  Google Scholar 

  2. Zhang, W., Linden, D.J.: The other side of the engram: Experience-driven changes in neuronal intrinsic excitability. Nature Reviews Neuroscience 4, 885–900 (2003)

    Article  Google Scholar 

  3. Daoudal, G., Debanne, D.: Long-term plasticity of intrinsic excitability: Learning rules and mechanisms. Learning and Memory 10, 456–465 (2003)

    Article  Google Scholar 

  4. Zhang, M., Hung, F., Zhu, Y., Xie, Z., Wang, J.H.: Calcium signal-dependent plasticity of neuronal excitability developed postnatally. J. Neurobiol. 61, 277–287 (2004)

    Article  Google Scholar 

  5. Cudmore, R., Turrigiano, G.: Long-term potentiation of intrinisic excitability in lv visual cortical neurons. J. Neurophysiol. 92, 341–348 (2004)

    Article  Google Scholar 

  6. Marder, E., Abbott, L.F., Turrigiano, G.G., Liu, Z., Golowasch, J.: Memory from the dynamics of intrinsic membrane currents. Proc. Natl. Acad. Sci. 93, 13481–13486 (1996)

    Article  Google Scholar 

  7. Baddeley, R., Abbott, L.F., Booth, M., Sengpiel, F., Freeman, T.: Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proc. R. Soc. London, Ser. B 264, 1775–1783 (1998)

    Google Scholar 

  8. Stemmler, M., Koch, C.: How voltage-dependent conductances can adapt to maximize the information encoded by neuronal firing rate. Nature Neuroscience 2, 521–527 (1999)

    Article  Google Scholar 

  9. Triesch, J.: Synergies between intrinsic and synaptic plasticity in individual model neurons. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 17. MIT Press, Cambridge (2005)

    Google Scholar 

  10. Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Computation 7, 1129–1159 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Triesch, J. (2005). A Gradient Rule for the Plasticity of a Neuron’s Intrinsic Excitability. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Biological Inspirations – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3696. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550822_11

Download citation

  • DOI: https://doi.org/10.1007/11550822_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28752-0

  • Online ISBN: 978-3-540-28754-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics