Skip to main content

ANN-Based System for Sorting Spike Waveforms Employing Refractory Periods

  • Conference paper
Artificial Neural Networks: Biological Inspirations – ICANN 2005 (ICANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3696))

Included in the following conference series:

Abstract

We describe a modification of a growing grid neural net for the purpose of sorting neuronal spike waveforms from extracellular recordings in the central nervous system. We make use of the fact, that real neurons exhibit a refractory period after firing an action potential during which they can not create a new one. This information is utilized to control the growth process of a growing grid, which we use to classify spike waveforms. The new algorithm is an alternative to a standard self-organizing map used in our previously published spike sorting system. Using simulated data, we show that this modification can further improve the accuracy in sorting neuronal spike waveforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buzsáki, G.: Large-scale recording of neuronal ensembles. Nat. Neurosci. 7, 446–451 (2004)

    Article  Google Scholar 

  2. Brown, E.N., Kass, R.E., Mitra, P.P.: Multiple Neural Spike Train Data Analysis: State-of-the-Art and Future Challenges. Nat. Neurosci. 7, 456–461 (2004)

    Article  Google Scholar 

  3. Harris, K.D., Henze, D.A., Csicsvari, J., Hirase, H., Buzsaki, G.: Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J. Neurophysiol. 84, 401–414 (2000)

    Google Scholar 

  4. Hermle, T., Bogdan, M., Schwarz, C.: Spike Sorting Algorithm Based on Independent Components Analysis (INCA) and a Self-Organizing Map (SOM) Minimizing User Interaction - Application to Multineuron Recordings in CNS. In: Proceedings of the World Congress on Neuroinformatics, Wien, Austria (2001)

    Google Scholar 

  5. Hermle, T., Schwarz, C., Bogdan, M.: Employing ICA and SOM for Spike Sorting of Multielectrode Recordings from CNS (Accepted). J. Physiol. Paris (2005) (accepted)

    Google Scholar 

  6. Kohonen, T.: Analysis of a simple self-organizing process. Biological Cybernetics 44, 135–140 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bell, A., Sejnowski, T.: An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7, 1129–1159 (1995)

    Article  Google Scholar 

  8. Amari, S., Cichocki, A., Yang, H.H.: A new learning algorithm for blind signal separation. In: Advances in Neural Information Processing Systems - Proceedings of the 1995 Conference, vol. 8, pp. 757–763. MIT Press, Cambridge (1996)

    Google Scholar 

  9. Delorme, A., Makeig, S.: EEGLAB: an Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis. J. Neurosci. Methods 134, 9–21 (2004)

    Article  Google Scholar 

  10. Fritzke, B.: Growing Grid - a Self-Organizing Network with Constant Neighborhood Range and Adaptation Strength. Neural Processing Letters 2, 9–13 (1995)

    Article  Google Scholar 

  11. Cottrell, M., de Bodt, E.: A Kohonen Map Representation to Avoid Misleading Interpretations. In: Proc. ESANN 1996, European Symp. on Artificial Neural Networks, Bruges, Belgium, D facto conference services, pp. 103–110 (1996)

    Google Scholar 

  12. Ultsch, A.: Self-Organizing Neural Networks for Visualization and Classification. In: Information and Classification, pp. 307–313. Springer, London (1993)

    Google Scholar 

  13. Bogdan, M., Rosenstiel, W.: Detection of cluster in self-organizing maps for controlling a prostheses using nerve signals. In: Proceedings of 9th European Symposium on Artificial Neural Networks ESANN 2001, Brugge, Belgium, D-Facto, pp. 131–136 (2001)

    Google Scholar 

  14. Fee, M.S., Mitra, P.P., Kleinfeld, D.: Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and non-Gaussian variability. J. Neurosci. Methods 69, 175–188 (1996)

    Article  Google Scholar 

  15. Harris, K.: KlustaKwik (2004), http://sourceforge.net/projects/klustakwik/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hermle, T., Bogdan, M., Schwarz, C., Rosenstiel, W. (2005). ANN-Based System for Sorting Spike Waveforms Employing Refractory Periods. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Biological Inspirations – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3696. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550822_20

Download citation

  • DOI: https://doi.org/10.1007/11550822_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28752-0

  • Online ISBN: 978-3-540-28754-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics