Skip to main content

Detonation Structure Simulation with AMROC

  • Conference paper
High Performance Computing and Communications (HPCC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 3726))

Abstract

Numerical simulations can be the key to the thorough understanding of the multi-dimensional nature of transient detonation waves. But the accurate approximation of realistic detonations is extremely demanding, because a wide range of different scales needs to be resolved. In this paper, we summarize our successful efforts in simulating multi-dimensional detonations with detailed and highly stiff chemical kinetics on recent parallel machines with distributed memory, especially on clusters of standard personal computers. We explain the design of AMROC, a freely available dimension-independent mesh adaptation framework for time-explicit Cartesian finite volume methods on distributed memory machines, and discuss the locality-preserving rigorous domain decomposition technique it employs. The framework provides a generic implementation of the blockstructured adaptive mesh refinement algorithm after Berger and Collela designed especially for the solution of hyperbolic fluid flow problems on logically rectangular grids. The ghost fluid approach is integrated into the refinement algorithm to allow for embedded non-Cartesian boundaries represented implicitly by additional level-set variables. Two- and three-dimensional simulations of regular cellular detonation structure in purely Cartesian geometry and a two-dimensional detonation propagating through a smooth 60 degree pipe bend are presented. Briefly, the employed upwind scheme and the treatment of the non-equilibrium reaction terms are sketched.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell, J., Berger, M., Saltzman, J., Welcome, M.: Three-dimensional adaptive mesh refinement for hyp. conservation laws. SIAM J. Sci. Comp. 15(1), 127–138 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berger, M., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84 (1988)

    Article  Google Scholar 

  3. Courant, R., Friedrichs, K.O.: Supersonic flow and shock waves. Applied mathematical sciences 21 (1976)

    Google Scholar 

  4. Deiterding, R.: Parallel adaptive simulation of multi-dimensional detonation structures (PhD thesis, Brandenburgische Technische Universität Cottbus (2003)

    Google Scholar 

  5. Deiterding, R.: AMROC - Blockstructured Adaptive Mesh Refinement in Object-oriented C++ (2005), Available at http://amroc.sourceforge.net

  6. Einfeldt, B., Munz, C.D., Roe, P.L., Sjögreen, B.: On Godunov-type methods near low densities. J. Comput. Phys. 92, 273–295 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152, 457–492 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Grossmann, B., Cinella, P.: Flux-split algorithms for flows with non-equilibrium chemistry and vibrational relaxation. J. Comput. Phys. 88, 131–168 (1990)

    Article  Google Scholar 

  9. Hu, X.Y., Khoo, B.C., Zhang, D.L., Jiang, Z.L.: The cellular structure of a two-dimensional H2/O2/Ar detonation wave. Combustion Theory and Modelling 8, 339–359 (2004)

    Article  Google Scholar 

  10. Kaps, P., Rentrop, P.: Generalized Runge-Kutta methods of order four with stepsize control for stiff ordinary differential equations. Num. Math. 33, 55–68 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kee, R.J., Rupley, F.M., Miller, J.A.: Chemkin-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics (SAND89-8009, Sandia National Laboratories, Livermore (1989)

    Google Scholar 

  12. Larrouturou, B.: How to preserve the mass fractions positivity when computing compressible multi-component flows. J. Comput. Phys. 95, 59–84 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. LeVeque, R.J.: Wave propagation algorithms for multidimensional hyperbolic systems. J. Comput. Phys. 131(2), 327–353 (1997)

    Article  MATH  Google Scholar 

  14. Oran, E.S., Weber, J.W., Stefaniw, E.I., Lefebvre, M.H., Anderson, J.D.: A numerical study of a two-dimensional H2-O2-Ar detonation using a detailed chemical reaction model. J. Combust. Flame 113, 147–163 (1998)

    Article  Google Scholar 

  15. Osher, S., Fedkiw, R.: Level set methods and dynamic implicit surfaces. Applied Mathematical Science 153 (2003)

    Google Scholar 

  16. Parashar, M., Browne, J.C.: On partitioning dynamic adaptive grid hierarchies. In: Proc. of 29th Annual Hawaii Int. Conf. on System Sciences (1996)

    Google Scholar 

  17. Parashar, M., Browne, J.C.: System engineering for high performance computing software: The HDDA/DAGH infrastructure for implementation of parallel structured adaptive mesh refinement. In: Structured Adaptive Mesh Refinement Grid Methods. Mathematics and its Applications. Springer, Heidelberg (1997)

    Google Scholar 

  18. Quirk, J.J.: Godunov-type schemes applied to detonation flows. In: Buckmaster, J. (ed.) Combustion in high-speed flows, Proc. Workshop on Combustion, Hampton, October 12-14, pp. 575–596. Kluwer Acad. Publ., Dordrecht (1992)

    Google Scholar 

  19. Rendleman, C.A., Beckner, V.E., Lijewski, M., Crutchfield, W., Bell, J.B.: Parallelization of structured, hierarchical adaptive mesh refinement algorithms. Computing and Visualization in Science 3 (2000)

    Google Scholar 

  20. Sanders, R., Morano, E., Druguett, M.-C.: Multidimensional dissipation for upwind schemes: Stability and applications to gas dynamics. J. Comput. Phys. 145, 511–537 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Strehlow, R.A.: Gas phase detonations: Recent developments. J. Combust. Flame 12(2), 81–101 (1968)

    Article  Google Scholar 

  22. Toro, E.F.: Riemann solvers and numerical methods for fluid dynamics. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  23. Tsuboi, N., Katoh, S., Hayashi, A.K.: Three-dimensional numerical simulation for hydrogen/air detonation: Rectangular and diagonal structures. Proc. Combustion Institute 29, 2783–2788 (2003)

    Article  Google Scholar 

  24. Westbrook, C.K.: Chemical kinetics of hydrocarbon oxidation in gaseous detonations. J. Combust. Flame 46, 191–210 (1982)

    Article  Google Scholar 

  25. Williams, D.N., Bauwens, L., Oran, E.S.: Detailed structure and propagation of three-dimensional detonations. Proc. Combustion Institute 26, 2991–2998 (1997)

    Article  Google Scholar 

  26. Williams, F.A.: Combustion theory. Addison-Wesley, Reading (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deiterding, R. (2005). Detonation Structure Simulation with AMROC. In: Yang, L.T., Rana, O.F., Di Martino, B., Dongarra, J. (eds) High Performance Computing and Communications. HPCC 2005. Lecture Notes in Computer Science, vol 3726. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11557654_103

Download citation

  • DOI: https://doi.org/10.1007/11557654_103

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29031-5

  • Online ISBN: 978-3-540-32079-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics