Skip to main content

Natural Inspiration for Artificial Adaptivity: Some Neurocomputing Experiences in Robotics

  • Conference paper
Unconventional Computation (UC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3699))

Included in the following conference series:

  • 500 Accesses

Abstract

The biological world offers a full range of adaptive mechanisms, from which technology researchers try to get inspiration. Among the several disciplines attempting to reproduce these mechanisms artificially, this paper concentrates on the field of Neural Networks and its contributions to attain sensorimotor adaptivity in robots. Essentially this type of adaptivity requires tuning nonlinear mappings on the basis of input-output information. Several experimental robotic systems are described, which rely on inverse kinematics and visuomotor mappings. Finally, the main trends in the evolution of neural computing are highlighted, followed by some remarks drawn from the surveyed robotic applications.

A more detailed version of this review, although less up to date, can be found in [48].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albus, J.S.: A new approach to manipulator control: The cerebellar model articulation controller (CMAC). Transactions of the ASME. Journal of Dynamic Systems, Measurement and Control 97, 220–227 (1975)

    Article  MATH  Google Scholar 

  2. An, G.: The effects of adding noise during backpropagation training on generalization performance. Neural Computation 8, 643–674 (1996)

    Article  Google Scholar 

  3. Arbib, M.A.: Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge (1995); (An updated second edition will appear in November 2002)

    Google Scholar 

  4. Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation. Oxford University Press, New York, and Institute of Physics Publishing, Bristol (1997)

    Google Scholar 

  5. Beyer, H.-G., Schwefel, H.-P.: Evolution strategies - A comprehensive introduction. Natural Computing 1(1), 3–52 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  7. Cherkassky, V.: Model complexity control and statistical learning theory. Natural Computing 1(1), 109–133 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. D’Souza, A., Vijayakumar, S., Schaal, S.: Learning inverse kinematics. In: Proc. IEEE/RSJ Conf. on Intel. Robots and Systems, Maui, Hawaii, USA, pp. 298–303 (2001)

    Google Scholar 

  9. Dorigo, M.(ed): Special issue on ‘Learning Autonomous Robots’. IEEE Trans. on Systems, Man and Cybernetics, Part B: Cybernetics 26(3) (1996)

    Google Scholar 

  10. Espiau, B., Chaumette, F., Rives, P.: A new approach to visual servoing in robotics. IEEE Trans. on Robotics and Automation 8(3), 313–326 (1992)

    Article  Google Scholar 

  11. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  12. Grossberg, S.: Competitive learning: from interactive activation to adaptive resonance. Cognitive Science 11, 23–63 (1987)

    Article  Google Scholar 

  13. Hebb, D.O.: The Organization of Behavior. Wiley, New York (1949)

    Google Scholar 

  14. Higuchi, T., Iwata, M., Liu, W. (eds.): Evolvable Systems: From Biology to Hardware. Springer, Heidelberg (1997)

    Google Scholar 

  15. Husbands, P., Meyer, J.A.: Proc. 1st European Workshop on Evolutionary Robotics (EvoRobot 1998). Springer, Heidelberg (1998)

    Google Scholar 

  16. Kohonen, T.: Self-Organizing Maps, 3rd edn. Series in Information Sciences, vol. 30. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  17. Koza, J.R.: Genetic Programming: On Programming Computers by means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  18. Kröse, B.J.A., van der Smagt, P.P.: An Introduction to Neural Networks, 5th edn. University of Amsterdam (1993)

    Google Scholar 

  19. LeCun, Y.: Une procedure d’aprentissage pour reseau au seuil assymetrique. In: Proc. of COGNITIVA, pp. 599–604 (1985)

    Google Scholar 

  20. Millán, J.R., Torras, C.: A reinforcement learning connectionist approach to robot path finding in non-maze-like environments. Machine Learning 8(3/4), 363–395 (1992)

    Article  Google Scholar 

  21. Millán, J.R., Torras, C.: Learning sensor-based navigation. In: Morik, K., Kaiser, M., Klingspor, V. (eds.) Making Robots Smarter: Combining Sensing and Action through Robot Learning. Kluwer Academic Publishers, Boston (1999)

    Google Scholar 

  22. Mitchell, T., Franklin, J., Thrun, S.: Recent Advances in Robot Learning. Kluwer Academic Publishers, Boston (1996)

    MATH  Google Scholar 

  23. Morik, K., Kaiser, M., Klingspor, V.: Making Robots Smarter: Combining Sensing and Action through Robot Learning. Kluwer Academic Publishers, Boston (1999)

    MATH  Google Scholar 

  24. Omidvar, O., van der Smagt, P.: Neural Systems for Robotics. Academic Press, San Diego (1997)

    Google Scholar 

  25. Park, D.C., El-Sharkawi, M.A., Marks II, R.J.: An adaptively trained neural network. IEEE Trans. on Neural Networks 2(3), 334–345 (1991)

    Article  Google Scholar 

  26. Pavlov, I.P.: Conditioned Reflexes. Oxford University Press, Oxford (1927)

    Google Scholar 

  27. Ritter, H., Martinetz, T., Schulten, K.: Neural Computation and Self-Organizing Maps. Addison Wesley, New York (1992)

    MATH  Google Scholar 

  28. Ruiz de Angulo, V., Torras, C.: On-line learning with minimum degradation in feedforward networks. IEEE Trans. on Neural Networks 6(3), 657–668 (1995)

    Article  Google Scholar 

  29. Ruiz de Angulo, V., Torras, C.: Self-calibration of a space robot. IEEE Trans. on Neural Networks 8(4), 951–963 (1997)

    Article  Google Scholar 

  30. Ruiz de Angulo, V., Torras, C.: A framework to deal with interference in connectionist systems. AI Communications 13(4), 259–274 (2000)

    MATH  Google Scholar 

  31. Ruiz de Angulo, V., Torras, C.: Architecture-independent approximation of functions. Neural Computation 13(5), 1119–1135 (2001)

    Article  MATH  Google Scholar 

  32. Ruiz de Angulo, V., Torras, C.: Neural learning invariant to network size changes. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS, vol. 2130, pp. 33–40. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  33. Ruiz de Angulo, V., Torras, C.: Learning inverse kinematics via cross-point function decomposition. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 856–861. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  34. Ruiz de Angulo, V., Torras, C.: Sequential learning in feedforward networks: Proactive and retroactive interference minimization. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 1339–1344. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  35. Ruiz de Angulo, V., Torras, C.: A deterministic algorithm that emulates learning with random weights. Neurocomputing 48(1-4), 975–1002 (2002)

    Article  MATH  Google Scholar 

  36. Ruiz de Angulo, V., Torras, C.: Neural learning methods yielding functional invariance. Theoretical Computer Science 320(1), 111–121 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  37. Ruiz de Angulo, V., Torras, C.: Speeding up the learning of robot kinematics through function decomposition. IEEE Trans. on Neural Networks (November 2005)

    Google Scholar 

  38. Ruiz de Angulo, V., Torras, C.: Using pSOMs to learn inverse kinematics through virtual decomposition of the robot. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 701–708. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  39. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Letters to Nature 323, 533–535 (1986)

    Article  Google Scholar 

  40. Simon, H.A.: The Sciences of the Artificial. MIT Press, Cambridge (1969)

    Google Scholar 

  41. Skinner, B.F.: The Behavior of Organisms: An Experimental Analysis. Appleton Century (1938)

    Google Scholar 

  42. Steels, L.: The Biology and Technology of Intelligent Autonomous Agents. NATO ASI Series F. Springer, Heidelberg (1995)

    Google Scholar 

  43. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  44. Torras, C.: Temporal-Pattern Learning in Neural Models. Lecture Notes in Biomathematics, vol. 63. Springer, Heidelberg (1985)

    MATH  Google Scholar 

  45. Torras, C.: Sensorimotor integration in robots. In: Ewert, P., Arbib, M.A. (eds.) Visuomotor Coordination: Experiments, Comparisons, Models and Robots, pp. 673–689. Plenum Press, New York (1989)

    Google Scholar 

  46. Torras, C.: Symbolic planning versus neural control in robots. In: Rudomín, P., Arbib, M.A., Cervantes-Pérez, F., Romo, R. (eds.) Neuroscience: From Neural Networks to Artificial Intelligence, Research Notes in Neural Computing, vol. 4, pp. 509–523. Springer, Heidelberg (1993)

    Google Scholar 

  47. Torras, C.(ed): Special issue on ‘Neural Networks at IJCAI 2001. Intl. Journal of Computational Intelligence and Applications 1(4) (2001)

    Google Scholar 

  48. Torras, C.: Neural computing increases robot adaptivity. Natural Computing 1(4), 391–425 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  49. van de Velde, W.(ed): Special issue on ‘Towards Learning Robots’. Robotics and Autonomous Systems 8(1-2) (1993)

    Google Scholar 

  50. Walter, J., Ritter, H.: Rapid learning with parametrized self-organizing maps. Neurocomputing 12, 131–153 (1996)

    Article  MATH  Google Scholar 

  51. Wells, G., Torras, C.: Assessing image features for vision-based robot positioning. Journal of Intelligent and Robotic Systems 30(1), 95–118 (2001)

    Article  MATH  Google Scholar 

  52. Wells, G., Venaille, C., Torras, C.: Vision-based robot positioning using neural networks. Image and Vision Computing 14, 715–732 (1996)

    Article  Google Scholar 

  53. Ziemke, T., Sharkey, N.(eds): Special issue on ‘Biorobotics’. Connection Science 10(3-4) (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Torras, C. (2005). Natural Inspiration for Artificial Adaptivity: Some Neurocomputing Experiences in Robotics. In: Calude, C.S., Dinneen, M.J., Păun, G., Pérez-Jímenez, M.J., Rozenberg, G. (eds) Unconventional Computation. UC 2005. Lecture Notes in Computer Science, vol 3699. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11560319_5

Download citation

  • DOI: https://doi.org/10.1007/11560319_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29100-8

  • Online ISBN: 978-3-540-32022-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics