Skip to main content

Towards a Theory of Self-organization

  • Conference paper
Distributed Computing (DISC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3724))

Included in the following conference series:

Abstract

Self-organization is an evolutionary process in which the e.ects of the environment are minimal; i.e., where the development of new, complex structures primarily takes place in and throughout the system itself. Natural phenomena, living forms, or social systems (e.g., growing crystals, cells aggregation, ant colonies) are examples of self-organizing systems in which a global order of the system emerges from local interactions. In the newly emerging fields of distributed systems (p2p, ad-hoc networks, sensor networks, cooperative robotics), self-organization has become one of the most desired properties. The major feature of all recent scalable distributed systems is their extreme dynamism in terms of structure, content, and load. In peer-to-peer systems, self-organization is handled through protocols for node arrival and departure, based either on a fault-tolerant overlay network, such as in CAN, Chord, Pastry, or on a localization and routing infrastructure [2]. In ad-hoc networks, self-organizing solutions have been designed to cluster ad-hoc nodes [4]. Self-organizing algorithms have also been developed to arrange mobile robots into prede.ned geometric patterns (e.g., [3]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anceaume, E., Defago, X., Gradinariu, M., Roy, M.: Towards a theory of self-organization. Technical Report 1694, IRISA (2005)

    Google Scholar 

  2. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distribution technologies. ACM Comput. Surv. 36(4), 335–371 (2004)

    Article  Google Scholar 

  3. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric paterns. SIAM Journal of Computing 28, 1347–1363 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Zhang, H., Arora, A.: Gs3: Scalable self-configuration and self-healing in wireless networks. In: Proc. of the 21st Annual ACM Symposium on Principles of Distributed Computing (PODC 2002), pp. 58–67 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Anceaume, E., Defago, X., Gradinariu, M., Roy, M. (2005). Towards a Theory of Self-organization. In: Fraigniaud, P. (eds) Distributed Computing. DISC 2005. Lecture Notes in Computer Science, vol 3724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11561927_43

Download citation

  • DOI: https://doi.org/10.1007/11561927_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29163-3

  • Online ISBN: 978-3-540-32075-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics