Skip to main content

ACME: An Associative Classifier Based on Maximum Entropy Principle

  • Conference paper
Algorithmic Learning Theory (ALT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3734))

Included in the following conference series:

Abstract

Recent studies in classification have proposed ways of exploiting the association rule mining paradigm. These studies have performed extensive experiments to show their techniques to be both efficient and accurate. However, existing studies in this paradigm either do not provide any theoretical justification behind their approaches or assume independence between some parameters. In this work, we propose a new classifier based on association rule mining. Our classifier rests on the maximum entropy principle for its statistical basis and does not assume any independence not inferred from the given dataset. We use the classical generalized iterative scaling algorithm (GIS) to create our classification model. We show that GIS fails in some cases when itemsets are used as features and provide modifications to rectify this problem. We show that this modified GIS runs much faster than the original GIS. We also describe techniques to make GIS tractable for large feature spaces – we provide a new technique to divide a feature space into independent clusters each of which can be handled separately. Our experimental results show that our classifier is generally more accurate than the existing classification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beeferman, D., Berger, A., Lafferty, J.: Statistical models for text segmentation. Machine Learning 34(1-3), 177–210 (1999)

    Article  MATH  Google Scholar 

  2. Boutilier, C., Friedman, N., Goldszmidt, M., Koller, D.: Context-specific independence in bayesian-networks. In: Uncertainty in Artificial Intelligence(UAI) (1996)

    Google Scholar 

  3. Clark, P., Niblett, T.: The cn2 induction algorithm. Machine Learning 2, 261–283 (1989)

    Google Scholar 

  4. Clark, P., Niblett, T.: Bayesian network classifiers. Machine Learning 29, 131–163 (1997)

    Article  Google Scholar 

  5. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  6. Darroch, J., Ratcliff, D.: Generalized iterative scaling for log-linear models. Annals of Mathematical Statistics 43, 1470–1480 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dong, G., Zhang, X., Wong, L., Li, J.: Classification by aggregating emerging patterns. In: Discovery Science (December 1999)

    Google Scholar 

  8. Duda, R., Hart, P.: Pattern Classification and Scene Analysis. John Wiley & Sons, Chichester (1973)

    MATH  Google Scholar 

  9. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attributes for classification learning. In: Intl. Joint Conf. on Artificial Intelligence(IJCAI), pp. 1022–1029 (1993)

    Google Scholar 

  10. Good, I.: Maximum entropy for hypothesis formulation, especially for multidimensional contingency tables. Annals of Mathematical Statistics 34, 911–934 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kononenko, I.: Semi-naive bayesian classifier. In: European Working Session on Learnign, pp. 206–219 (1991)

    Google Scholar 

  12. Langley, P., Sage, S.: Induction of selective-bayesian classifiers. In: Uncertainty in Artificial Intelligence(UAI), pp. 399–406 (1994)

    Google Scholar 

  13. Lau, R.: Adaptive statistical language modeling. Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA (1994)

    Google Scholar 

  14. Li, W., Han, J., Pei, J.: CMAR: Accurate and efficient classification based on multiple class-association rules. In: ICDM (2001)

    Google Scholar 

  15. Lim, T.-S., Loh, W.-Y., Shih, Y.-S.: A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Machine Learning 40(3), 203–228 (2000)

    Article  MATH  Google Scholar 

  16. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: Proc. of 4th Intl. Conf. on Knowledge Discovery and Data Mining, KDD (August 1998)

    Google Scholar 

  17. Meretakis, D., Lu, H., Wuthrich, B.: A study on the performance of large bayes classifier. In: Lopez de Mantaras, R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 271–279. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  18. Meretakis, D., Wuthrich, B.: Extending naive-bayes classifiers using long itemsets. In: KDD, pp. 165–174 (1999)

    Google Scholar 

  19. Merz, C., Murphy, P.: UCI repository of machine learning databases (1996), http://cs.uci.edu/~mlearn/MLRepository.html

  20. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  21. Ratnaparkhi, A.: A simple introduction to maximum entropy models for natural language processing. Technical Report IRCS Report 97-98, Institute for Research in Cognitive Science, University of Pennsylvania (May 1997)

    Google Scholar 

  22. Ratnaparkhi, A.: Maximum Entropy Models for Natural Language Ambiguity Resolution. PhD thesis, Institute for Research in Cognitive Science, University of Pennsylvania (1998)

    Google Scholar 

  23. Rosenfeld, R.: Adaptive Statistical Language Modeling: A Maximum Entropy Approach. PhD thesis, Carnegie Mellon University (1994)

    Google Scholar 

  24. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thonangi, R., Pudi, V. (2005). ACME: An Associative Classifier Based on Maximum Entropy Principle. In: Jain, S., Simon, H.U., Tomita, E. (eds) Algorithmic Learning Theory. ALT 2005. Lecture Notes in Computer Science(), vol 3734. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11564089_11

Download citation

  • DOI: https://doi.org/10.1007/11564089_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29242-5

  • Online ISBN: 978-3-540-31696-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics