Skip to main content

Mapping Visual Behavior to Robotic Assembly Tasks

  • Conference paper
MICAI 2005: Advances in Artificial Intelligence (MICAI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3789))

Included in the following conference series:

  • 1451 Accesses

Abstract

This paper shows a methodology for on-line recognition and classification of pieces in robotic assembly tasks and its application into an intelligent manufacturing cell. The performance of industrial robots working in unstructured environments can be improved using visual perception and learning techniques. The object recognition is accomplished using an Artificial Neural Network (ANN) architecture which receives a descriptive vector called CFD&POSE as the input. This vector represents an innovative methodology for classification and identification of pieces in robotic tasks, every stage of the methodology is described and the proposed algorithms explained. The vector compresses 3D object data from assembly parts and it is invariant to scale, rotation and orientation, and it also supports a wide range of illumination levels. The approach in combination with the fast learning capability of ART networks indicates the suitability for industrial robot applications as it is demonstrated through experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosenfeld, A.: Computer vision: A source of models for biological visual processes. Biomedical Engineering 36(1), 93–96 (1989)

    Article  Google Scholar 

  2. Gullapalli, V., Franklin, J.A., Benbrahim, H.: Acquiring robot skills via reinforcement learning. IEEE Control Systems, 13–24 (February 1994)

    Google Scholar 

  3. Cervera, E., del Pobil, A.P.: Programming and learning in real world manipulation tasks. IEEE/RSJ. Int. Conf. on Inteligent Robot and Systems 1, 471–476 (1997)

    Google Scholar 

  4. Howarth, M.: An investigation of task level programming for robotic assembly. PhD thesis, The Nottingham Trent University (January 1998)

    Google Scholar 

  5. Lopez-Juarez, I.: On-line learning for robotic assembly using artificial neural networks and contact force sensing. PhD thesis, The Nottingham Trent University (2000)

    Google Scholar 

  6. Hoska, D.R.: Fixturless assembly manufacturing. Manuf. Eng. 100, 49–54 (1988)

    Google Scholar 

  7. Ngyuen, W., Mills, J.K.: Multirobot control for flexible fixturless assembly of flexible sheet metal autobody parts. In: IEEE Int. Conf. on Robotics and Aut., pp. 2340–2345 (1996)

    Google Scholar 

  8. Plut, W.J., Bone, G.M.: Limited mobility grasps for fixturless assembly. In: Proceedings of the IEEE Int. Conf. on Robotics and Aut., Minneapolis, Minn., pp. 1465–1470 (1996)

    Google Scholar 

  9. Plut, W.J., Bone, G.M.: 3-D flexible fixturing using multi-degree of freedom gripper for robotics fixturless assembly. In: IEEE Int. Conf. on Robotics and Aut., pp. 379–384 (1997)

    Google Scholar 

  10. Langley, C.S., et al.: A memory efficient neural network for robotic pose estimation. In: IEEE Int. Symp. on Computational. Intelligence on Robotics and Aut., vol. 1, pp. 418–423 (2003)

    Google Scholar 

  11. Bribiesca, E.: A new Chain Code. In: Pattern Recognition 32, pp. 235–251. Pergamon, Oxford (1999)

    Google Scholar 

  12. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans Inform Theory IT-8, 179-187 (1962)

    Google Scholar 

  13. Yüceer, C., Oflazer, K.: A rotation, scaling and translation invariant pattern classification system. Pattern Recognition 26(5), 687–710 (1993)

    Article  Google Scholar 

  14. Bone, G.M., Capson, D.: Vision-guided fixturless assembly of automotive components. Robotics and Computer Integrated Manufacturing 19, 79–87 (2003)

    Article  Google Scholar 

  15. Jörg, S., et al.: Flexible robot-assembly using a multi-sensory approach. In: IEEE, Int. Conf. on Robotics and Aut., San Fco. Calif., USA, pp. 3687–3694 (2000)

    Google Scholar 

  16. Philips, W.: A new fast algorithm for moment com. Pattern Recog. 26, 1619–1621 (1993)

    Article  Google Scholar 

  17. Chen, K.: Efficient parallel algorithms for computation of two-dimensional image moments. Pattern Recognition 23, 109–119 (1990)

    Article  Google Scholar 

  18. Peña-Cabrera, M., Lopez Juarez, I., Rios-Cabrera, R.: A learning approach for on-line object recognition in robotic tasks. In: Int. Conf. on Computer Science. IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  19. Uhr, L.: Highly parallel, hierarchical, recognition cone perceptual structures. In: Uhr, L. (ed.) Parallel Computer Vision, pp. 249–292 (1987)

    Google Scholar 

  20. Kronauer, R.E., Zeevi, Y.: Reorganization and diversification of signals in vision. IEEE Trans. Syst. Man, Cybern. SMC-15, 91–101 (1985)

    Google Scholar 

  21. Uhr, L.: Psychological motivation and underlying concepts. In: Tanimoto, S., Klinger, A. (eds.) Structured Computer Vision, pp. 1–30 (1980)

    Google Scholar 

  22. Granrath, D.G.: The role of human vision models in image proccesing. Proc. IEEE 69(5), 552–561 (1981)

    Article  Google Scholar 

  23. Towell, G.G., Shavlik, J.W.: Knowledge-based artificial neural networks Artificial Intelligence.  70(1-2), 119–166 (1994)

    Google Scholar 

  24. Feldman, R.S.: Understanding Psychology, 3rd edn. McGraw-Hill, Inc., New York (1993)

    Google Scholar 

  25. Grossberg, S.: Adaptive pattern classification and universal recoding II: Feedback, expectation, olfaction and illusions. Biological Cybernetics 23, 187–202 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  26. Carpenter, G.A., et al.: A massively parallel architecture for a self-organizing neural pattern recognition. In: Machine, pp. 54–115. Academic Press, Inc, London (1987)

    Google Scholar 

  27. Carpenter, G.A., et al.: ARTMAP: supervised real-time learning and classification of nonstationary data by self-organizing neural network. Neural Networks, 565–588 (1991)

    Google Scholar 

  28. Peña-Cabrera, M., López-Juárez, I., Ríos-Cabrera, R., Corona-Castuera, J.: Machine vision learning process applied to robotic assembly in manufacturing cells. Journal of Assembly Automation 25(3) (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peña-Cabrera, M., López-Juárez, I., Rios-Cabrera, R., Corona-Castuera, J., Osorio, R. (2005). Mapping Visual Behavior to Robotic Assembly Tasks. In: Gelbukh, A., de Albornoz, Á., Terashima-Marín, H. (eds) MICAI 2005: Advances in Artificial Intelligence. MICAI 2005. Lecture Notes in Computer Science(), vol 3789. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11579427_35

Download citation

  • DOI: https://doi.org/10.1007/11579427_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29896-0

  • Online ISBN: 978-3-540-31653-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics