Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3835))

Abstract

First-order coherent logic (CL) extends resolution logic in that coherent formulas allow certain existential quantifications. A substantial number of reasoning problems (e.g., in confluence theory, lattice theory and projective geometry) can be formulated directly in CL without any clausification or Skolemization. CL has a natural proof theory, reasoning is constructive and proof objects can easily be obtained. We prove completeness of the proof theory and give a linear translation from FOL to CL that preserves logical equivalence. These properties make CL well-suited for providing automated reasoning support to logical frameworks. The proof theory has been implemented in Prolog, generating proof objects that can be verified directly in the proof assistant Coq. The prototype has been tested on the proof of Hessenberg’s Theorem, which could be automated to a considerable extent. Finally, we compare the prototype to some automated theorem provers on selected problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avron, A.: Gentzen-type systems, resolution and tableaux. Journal of Automated Reasoning 10(2), 265–281 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bezem, M.: Website for geometric logic, http://www.ii.uib.no/~bezem/GL

  3. Bezem, M., Coquand, T.: Newman’s Lemma – a Case Study in Proof Automation and Geometric Logic. In: Gurevich, Y. (ed.) The Logic in Computer Science Column. Bulletin of the European Association for Theoretical Computer Science, vol. 79, pp. 86–100 (February 2003); Also in Paun, G., Rozenberg, G., Salomaa, A. (eds.): Current trends in Theoretical Computer Science, vol. 2, pp. 267–282. World Scientific, Singapore (2004)

    Google Scholar 

  4. Bezem, M.A., Hendriks, D., de Nivelle, H.: Automated proof construction in type theory using resolution. Journal of Automated Reasoning 29(3–4), 253–275 (2003)

    Google Scholar 

  5. Blass, A.: Topoi and computation. Bulletin of the EATCS 36, 57–65 (1998)

    Google Scholar 

  6. Bry, F., Torge, S.: Model generation for applications – A tableau method complete for finite satisfiability. Research Report PMS-FB-1997-15, LMU (1997)

    Google Scholar 

  7. Colmerauer, A., et al.: Un système de communication homme-machine en français. Technical Report, Université II Aix-Marseille (1973)

    Google Scholar 

  8. The Coq Development Team, The Coq Proof Assistant Reference Manual, Version 8.0. Available at, http://coq.inria.fr/

  9. Coquand, T.: A Completeness Proof for Geometric Logic. In: To appear in Proceedings LMPS 2003 (2003)

    Google Scholar 

  10. Cronheim, A.: A proof of Hessenberg’s Theorem. Proceedings of the AMS 4(2), 219–221 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  11. Coste, M., Lombardi, H., Roy, M.F.: Dynamical methods in algebra: effective Nullstellensätze. Annals of Pure and Applied Logic 111(3), 203–256 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. He, L., Chao, Y., Itoh, H.: R-SATCHMO: Refinements on I-SATCHMO. Journal of Logic and Computation 14(2), 117–143 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Horn, A.: On sentences which are true of direct unions of algebras. Journal of Symbolic Logic 16(1), 14–21 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  14. Johnstone, P.: Sketches of an Elephant: a topos theory compendium. Oxford Logic Guides 44, vol. 2. OUP (2002)

    Google Scholar 

  15. Kowalski, R.A.: Predicate logic as a programming language. In: Proceedings IFIP 1974, pp. 569–574 (1974)

    Google Scholar 

  16. Loveland, D., Reed, D., Wilson, D.: SATCHMORE: SATCHMO with RElevancy. Journal of Automated Reasoning 14, 325–351 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Manthey, R., Bry, F.: SATCHMO: a theorem prover implemented in Prolog. In: Lusk, E.‘., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 415–434. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  18. Meier, A.: The proof transformation system TRAMP, http://www.ags.uni-sb.de/~ameier/tramp.html

  19. Robinson, J.A.: A Machine-Oriented Logic Based on the Resolution Principle. Journal of the ACM 12(1), 23–41 (1965)

    Article  MATH  Google Scholar 

  20. Skolem, T.: Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit und Beweisbarkeit mathematischen Sätze nebst einem Theoreme über dichte Mengen. In: Skrifter I, vol. 4, pp. 1–36. Det Norske Videnskaps-Akademi (1920); Also in Fenstad, J.E. (ed.): Selected Works in Logic by Th. Skolem, pp. 103–136. Universitetsforlaget, Oslo (1970)

    Google Scholar 

  21. Smullyan, R.M.: First-order logic. In: Corrected reprint of the 1968 original. Dover Publications Inc., New York (1995)

    Google Scholar 

  22. Terese: Term Rewriting Systems. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  23. Thousands of Problems for Theorem Provers, The TPTP Problem Library for Automated Theorem Proving, http://www.cs.miami.edu/~tptp

  24. Wielemaker, J.: SWI-Prolog 5.4.1 Reference Manual. Available at, http://www.swi-prolog.org/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bezem, M., Coquand, T. (2005). Automating Coherent Logic. In: Sutcliffe, G., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2005. Lecture Notes in Computer Science(), vol 3835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11591191_18

Download citation

  • DOI: https://doi.org/10.1007/11591191_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30553-8

  • Online ISBN: 978-3-540-31650-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics