Skip to main content

Visual Based Human Motion Analysis: Mapping Gestures Using a Puppet Model

  • Conference paper
Progress in Artificial Intelligence (EPIA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3808))

Included in the following conference series:

Abstract

This paper presents a novel approach to analyze the appearance of human motions with a simple model i.e. mapping the motions using a virtual marionette model. The approach is based on a robot using a monocular camera to recognize the person interacting with the robot and start tracking its head and hands. We reconstruct 3-D trajectories from 2-D image space (IS) by calibrating and fusing the camera images with data from an inertial sensor, applying general anthropometric data and restricting the motions to lie on a plane. Through a virtual marionette model we map 3-D trajectories to a feature vector in the marionette control space (MCS). This implies inversely that now a certain set of 3-D motions can be performed by the (virtual) marionette system. A subset of these motions are considered to convey information (i.e. gestures). Thus, we are aiming to build up a database which keeps the vocabulary of gestures represented as signals in the MCS. The main contribution of this work is the computational model of the IS-MCS-Mapping. We introduce the guide robot “Nicole” to place our system in an embodied context. We sketch two novel approaches to represent human motion (i.e. Marionette Space and Labananalysis). We define a gesture vocabulary organized in three sets (i.e. Cohen’s Gesture Lexicon, Pointing Gestures and Other Gestures).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gavrila, D.M.: The visual analysis of human movement: A survey. In: CVIU, vol. 73, pp. 82–98 (1999)

    Google Scholar 

  2. Aggarwal, J.K., Cai, Q.: Human motion analysis: A review. In: CVIU, vol. 73, pp. 428–440 (1999)

    Google Scholar 

  3. Pentland, A.: Looking at people: Sensing for ubiquitous and wearable computing. IEEE Transactions on PAMI 22, 107–119 (2000)

    Google Scholar 

  4. Moeslund, T.B., Granum, E.: A survey of computer vision-based human motion capture. In: CVIU, vol. 81, pp. 231–268 (2001)

    Google Scholar 

  5. Meltzoff, A.N., Moore, M.K.: Resolving the debate about early imitation, The Blackwell reader in developmental psychology, Oxford, pp. 151–155 (1999)

    Google Scholar 

  6. Meltzoff, A.N., Moore, M.K.: Imitation of facial and manual gestures by human neonates. Science 198, 75–78 (1977)

    Article  Google Scholar 

  7. Cohen, C.J., Conway, L., Koditschek, D.: Dynamical system representation, generation, and recognition of basic oscillatory motion gestures. In: International Conference on Automatic Face- and Gesture-Recognition (1996)

    Google Scholar 

  8. Kahn, R.E., Swain, M.J., Prokopowicz, P.N., Firby, R.J.: Gesture recognition using the perseus architecture. In: IEEE International Conference on Computer Vision and Pattern Recognition (1996)

    Google Scholar 

  9. Dias, J.: Reconstrução Tridimensional Utilizando Visão Dinâmica. PhD thesis, University of Coimbra, Portugal (1994)

    Google Scholar 

  10. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  11. Bartenieff, I., Lewis, D.: Body Movement: Coping with the Environment. Gordon and Breach Science, New York (1980)

    Google Scholar 

  12. Badler, N.I., Phillips, C.B., Webber, B.L.: Simulating Humans: Computer Graphics, Animation, and Control. Oxford Univ. Press, Oxford (1993)

    MATH  Google Scholar 

  13. Zhao, L., Badler, N.I.: Acquiring and validating motion qualities from live limb gestures. Graphical Models 67, 1–16 (2005)

    Article  Google Scholar 

  14. Hoffmann, G.: Teach-in of a robot by showing the motion. In: IEEE International Conference on Image Processing, pp. 529–532 (1996)

    Google Scholar 

  15. Xing, S., Chen, I.M.: Design expressive behaviors for robotic puppet. In: International Conference on Control, Automation, Robotics And Vision, vol. 1, pp. 378–383 (2002)

    Google Scholar 

  16. Allot, R.: Gestural equivalence (equivalents) of language. Language Origins Society UCAL Berkeley (1994)

    Google Scholar 

  17. Chen, I.M., Tay, R., Xing, S., Yeo, S.H.: Marionette: From traditional manipulation to robotic manipulation. In: International Symposium on History of Machines and Mechanisms (2004)

    Google Scholar 

  18. Yamane, K., Hodgins, J.K., Brown, H.B.: Controlling a motorized marionette with human motion capture data. In: IEEE International Conference on Robotics and Automation (2003)

    Google Scholar 

  19. Hemami, H., Dinneen, J.A.: A marionette-based strategy for stable movement. IEEE Trans. on Systems, Man, and Cybernetics 23, 502–511 (1993)

    Article  MATH  Google Scholar 

  20. Loeb, G.E.: Learning from the spinal cord. Journal of Physiology 533.1, 111–117 (2001)

    Article  Google Scholar 

  21. Shamaie, A., Sutherland, A.: A dynamic model for real-time tracking of hands in bimanual movements. In: Camurri, A., Volpe, G. (eds.) GW 2003. LNCS (LNAI), vol. 2915, pp. 172–179. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  22. Soechting, J.F., Flanders, M.: Moving in three-dimensional space: Frames of reference, vectors, and coordinate systems. Annual Review of Neuroscience 15, 167–191 (1992)

    Article  Google Scholar 

  23. Carpenter, H.: Movement of the eyes, 2nd edn. London Pion Limited, London (1988)

    Google Scholar 

  24. Lobo, J., Dias, J.: Inertial sensed ego-motion for 3d vision. Journal of Robotic Systems 21, 3–12 (2004)

    Article  Google Scholar 

  25. Lobo, J., Dias, J.: Vision and inertial sensor cooperation using gravity as a vertical reference. IEEE Trans. on PAMI 25, 1597–1608 (2003)

    Google Scholar 

  26. Jose Barreto, P.M., Dias, J.: Human-robot interaction based on haar-like features and eigenfaces. In: IEEE International Conference on Robotics and Automation (2004)

    Google Scholar 

  27. Paulo Menezes, J.B., Dias, J.: Face tracking based on haar-like features and eigenfaces. In: IFAC/EURON Symposium on Intelligent Autonomous Vehicles (2004)

    Google Scholar 

  28. Bradski, G.R.: Computer vision face tracking for use in a perceptual user interface. Intel Technology Journal 15 (1998)

    Google Scholar 

  29. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME—J. Basic Eng. 82, 35–45 (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rett, J., Dias, J. (2005). Visual Based Human Motion Analysis: Mapping Gestures Using a Puppet Model. In: Bento, C., Cardoso, A., Dias, G. (eds) Progress in Artificial Intelligence. EPIA 2005. Lecture Notes in Computer Science(), vol 3808. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11595014_40

Download citation

  • DOI: https://doi.org/10.1007/11595014_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30737-2

  • Online ISBN: 978-3-540-31646-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics