Skip to main content

Computational Origami Construction of a Regular Heptagon with Automated Proof of Its Correctness

  • Conference paper
Automated Deduction in Geometry (ADG 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3763))

Included in the following conference series:

Abstract

Construction of geometrical objects by origami, the Japanese traditional art of paper folding, is enjoyable and intriguing. It attracted the minds of artists, mathematicians and computer scientists for many centuries. Origami will become a more rigorous, effective and enjoyable art if the origami constructions can be visualized on the computer and the correctness of the constructions can be automatically proved by an algorithm. We call the methodology of visualizing and automatically proving origami constructions computational origami. As a non-trivial example, in this paper, we visualize a construction of a regular heptagon by origami and automatically prove the correctness of the construction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alperin, R.C.: A Mathematical Theory of Origami Constructions and Numbers. New York J. Math. 6, 119–133 (2000)

    MATH  MathSciNet  Google Scholar 

  2. Buchberger, B.: Gröbner-Bases: An Algorithmic Method in Polynomial Ideal Theory. In: Bose, N.K. (ed.) Multidimensional Systems Theory - Progress, Directions and Open Problems in Multidimensional Systems, Ch. 6. Reidel Publishing Company, Dodrecht (1985) (2nd edn. Kluwer Academic Publisher 2003)

    Google Scholar 

  3. Buchberger, B., Jebelean, T., Kriftner, F., Marin, M., Tomuta, E., Vasaru, D.: An overview on the Theorema project. In: Kuechlin, W. (ed.) Procdings of ISSAC 1997 (International Symposium on Symbolic and Algebraic Computation, Maui, Hawaii, July 21-23. ACM Press, New York (1997)

    Google Scholar 

  4. Buchberger, B., Dupre, C., Jebelean, T., Kriftner, F., Nakagawa, K., Vasaru, D., Windsteiger, W.: The Theorema Project: A Progress Report. In: Kerber, M., Kohlhase, M. (eds.) Symbolic Computation and Automated Reasoning: The Calculemus-2000 Symposium (Symposium on the Integration of Symbolic Computation and Mechanized Reasoning (August 6-7, 2000); A K Peters Ltd., St. Andrews, Scotland (2001)

    Google Scholar 

  5. Buchberger, B.: Towards the Automated Synthesis of a Groebner bases Algorithm. RACSAM, Reviews of the Spanish Royal Academy of Science. Serie A: Mathematicas 98(1), 65–75 (2004)

    MATH  MathSciNet  Google Scholar 

  6. Chou, S.-C.: Mechanical geometry theorem proving. Reidel, Dordrecht Boston (1988)

    MATH  Google Scholar 

  7. Geretschläger, R.: Euclidean constructions and the geometry of origami. Math. Mag. 68(5), 357–371 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gleason, A.M.: Angle Trisection, the Heptagon, and the Triskaidecagon. American Mathematical Monthly 95(3), 185–194 (1998)

    Article  MathSciNet  Google Scholar 

  9. Huzita, H.: Axiomatic Development of Origami Geometry. In: Proceedings of the First International Meeting of Origami Science and Technology, pp. 143–158 (1989)

    Google Scholar 

  10. Huzita, H.: Drawing the regular heptagon and the regular nonagon by origami (paper folding). Symmetry: Culture and Science 5(1), 69–84 (1994)

    MATH  MathSciNet  Google Scholar 

  11. Ida, T., Ţepeneu, D., Buchberger, B., Robu, J.: Proving and Constraint Solving in Computational Origami. In: Buchberger, B., Campbell, J. (eds.) AISC 2004. LNCS (LNAI), vol. 3249, pp. 132–142. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Kapur, D.: Using Gröbner bases to reason about geometry problems. J. Symbolic Computation 2(4), 399–408 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kutzler, B., Stifter, S.: On the application of Buchberger’s algorithm to automated geometry theorem proving. J. Symb. Comput. 2, 389–397 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  14. Robu, J.: Automated Geometric Theorem Proving (PhD Thesis), RISC-Linz Report Series No. 02-23. Johannes Kepler University Linz, Austria (2002)

    Google Scholar 

  15. Ţepeneu, D., Ida, T.: MathGridLink - A bridge between Mathematica and “the Grid”. In: The 20th Annual Conference of Japan Society of Software Science and Technology, Nagoya (September 2003)

    Google Scholar 

  16. Wu, W.-T.: Basic principles of mechanical theorem proving in elementary geometries. J. Automat. Reason. 2, 221–252 (1986)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Robu, J., Ida, T., Ţepeneu, D., Takahashi, H., Buchberger, B. (2006). Computational Origami Construction of a Regular Heptagon with Automated Proof of Its Correctness. In: Hong, H., Wang, D. (eds) Automated Deduction in Geometry. ADG 2004. Lecture Notes in Computer Science(), vol 3763. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11615798_2

Download citation

  • DOI: https://doi.org/10.1007/11615798_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31332-8

  • Online ISBN: 978-3-540-31363-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics