Skip to main content

Arity and Alternation: A Proper Hierarchy in Higher Order Logics

  • Conference paper
Foundations of Information and Knowledge Systems (FoIKS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3861))

Abstract

We study the effect of simultaneously bounding the maximal arity of the higher-order variables and the alternation of quantifiers in higher-order logics, as to their expressive power on finite structures (or relational databases). Let AA i(r,m) be the class of (i + 1)-th order logic formulae where all quantifiers are grouped together at the beginning of the formulae, forming m alternating blocks of consecutive existential and universal quantifiers, and such that the maximal arity of the higher-order variables is bounded by r. Note that, the order of the quantifiers in the prefix may be mixed. We show that, for every i ≥ 1, the resulting AA i(r,m) hierarchy of formulae of (i + 1 )-th order logic is proper. From the perspective of database query languages this means that, for every i ≥ 2, if we simultaneously increase the arity of the quantified relation variables by one and the number of alternating blocks of quantifiers by four in the fragment of higher-order relational calculus of order i, AA i − − 1, then we can express more queries. This extends a result by J. A. Makowsky and Y. B. Pnueli who proved that the same hierarchy in second-order logic is proper. In both cases the strategy used to prove the results consists in considering formulae which, represented as finite structures, satisfy themselves. As the well known diagonalization argument applies here, this gives rise, for each order i and for each level of the AA i(r,m) hierarchy of arity and alternation, to a class of formulae which is not definable in that level, but which is definable in a higher level of the same hierarchy. We then use a similar argument to prove that the classes of Σ\(^{i}_{m}\) ∪ Π\(^{i}_{m}\) formulae in which the higher-order variables of all orders up to i + 1 have maximal arity at most r, also induce a proper hierarchy in each higher-order logic of order i ≥ 3. It is not known whether the correspondent hierarchy in second-order is proper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1994)

    Google Scholar 

  2. Ajtai, M.: \(\Sigma^1_1\)-formulae on Finite Structures. Annals of Pure and Applied Logic 24, 1–48 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik und Grund. Math. 6, 66–92 (1960)

    Article  MATH  Google Scholar 

  4. Chandra, A.K., Harel, D.: Computable Queries for Relational Data Bases. Journal of Computer and System Sciences 21(2), 156–178 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ebbinghaus, H., Flum, J.: Finite Model Theory, 2nd edn. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  6. Ferrarotti, F.A., Turull Torres, J.M.: Arity and Alternation of Quantifiers in Higher Order Logics. To appear as a Technical Report of the Information Systems Department of Massey University (2005), http://infosys.massey.ac.nz/research/rs_techreports.html

  7. Grohe, M.: Bounded Arity Hierarchies in Fixed-Point Logics. In: Meinke, K., Börger, E., Gurevich, Y. (eds.) CSL 1993. LNCS, vol. 832, pp. 150–164. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  8. Grohe, M.: Arity Hierarchies. Annals of Pure and Applied Logic 82, 103–163 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grohe, M., Hella, L.: A Double Arity Hierarchy Theorem for Transitive Closure Logic. Archive for Mathematical Logic 35, 157–171 (1996)

    MathSciNet  MATH  Google Scholar 

  10. Hella, L.: Definability Hierarchies of Generalized Quantifiers. Annals of Pure and Applied Logic 43, 235–271 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hella, L.: Logic Hierarchies in PTIME. In: Poceedings of the 7th IEEE Symposium in Logic and Computer Science, pp. 360–368 (1992)

    Google Scholar 

  12. Hella, L., Turull-Torres, J.M.: Expressibility of Higher Order Logics. Electronic Notes in Theoretical Computer Science 84 (2003)

    Google Scholar 

  13. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979)

    MATH  Google Scholar 

  14. Kolodziejczyk, L.A.: Truth Definitions in Finite Models. The Journal of Symbolic Logic 69(1), 183–200

    Google Scholar 

  15. Kolodziejczyk, L.A.: A Finite Model-Theoretical Proof of a Property of Bounded Query Classes within PH. The Journal of Symbolic Logic 69(4), 1105–1116

    Google Scholar 

  16. Leivant, D.: Higher order logic. In: Gabbay, D.M., et al. (eds.) Handbook of logic in artificial intelligence and logic programming, vol. 2, pp. 228–321. Oxford University Press, Oxford (1994)

    Google Scholar 

  17. Makowsky, J.A., Pnueli, Y.B.: Arity and alternation in second-order logic. Annals of Pure and Applied Logics 78, 189–202 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Matz, O.: One Existential Quantifier will do in Existential Monadic Second-Order Logic Over Pictures. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 751–759. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  19. Matz, O., Schweikardt, N., Thomas, W.: The Monadic Quantifier Alternation Hierarchy over Grids and Graphs. Information and Computation 179, 356–383 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mostowski, M.: On Representing Concepts in Finite Models. Mathematical Logic Quarterly 47, 513–523 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mostowski, M.: On Representing Semantics in Finite Models. In: Rojszczak, A., Cachro, J., Kurczewski, G. (eds.) Philosophical Dimensions of Logic and Science: Selected Contributed Papers from the 11th International Congress of Logic, Methodology, and Philosophy of Science, Krakow, pp. 15–28. Kluwer, Dordrecht (2003)

    Google Scholar 

  22. Otto, M.: Note on the Number of Monadic Quantifiers in Monadic \(\Sigma^1_1\). Inform. Process. Lett. 53, 337–339 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stockmeyer, L.: The Polynomial Time Hierarchy. Theoretical Computer Science 3(1), 1–22 (1976)

    Article  MathSciNet  Google Scholar 

  24. Tarski, A.: Pojȩcie prawdy w jȩzykach nauk dedukcyjnych. In: Tarsky, A. (ed.) Warszawa, Nakładem Towarzystwa Naukowego Warszawskiego (1933); English translation of the German version: The Concept of Truth in Formalized Languages. Logic, Semantics, Metamathematics, pp. 152–278. Clarendon Press, Oxford (1956)

    Google Scholar 

  25. Thomas, W.: Classifying Regular Events in Symbolic Logic. J. Comput, System Sci. 25, 360–376 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Vardi, M.: The Complexity of Relational Query Languages. In: Proceedings of the 14th ACM Symposium on Theory of Computing, pp. 137–146 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ferrarotti, F.A., Torres, J.M.T. (2006). Arity and Alternation: A Proper Hierarchy in Higher Order Logics. In: Dix, J., Hegner, S.J. (eds) Foundations of Information and Knowledge Systems. FoIKS 2006. Lecture Notes in Computer Science, vol 3861. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11663881_7

Download citation

  • DOI: https://doi.org/10.1007/11663881_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31782-1

  • Online ISBN: 978-3-540-31784-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics