Skip to main content

List Scheduling in Order of α-Points on a Single Machine

  • Chapter
Efficient Approximation and Online Algorithms

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3484))

Abstract

Many approximation results for single machine scheduling problems rely on the conversion of preemptive schedules into (preemptive or non-preemptive) solutions. The initial preemptive schedule is usually an optimal solution to a combinatorial relaxation or a linear programming relaxation of the scheduling problem under consideration. It therefore provides a lower bound on the optimal objective function value. However, it also contains structural information which is useful for the construction of provably good feasible schedules. In this context, list scheduling in order of so-called α-points has evolved as an important and successful tool. We give a survey and a uniform presentation of several approximation results for single machine scheduling with total weighted completion time objective from the last years which rely on the concept of α-points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afrati, F., Bampis, E., Chekuri, C., Karger, D., Kenyon, C., Khanna, S., Milis, I., Queyranne, M., Skutella, M., Stein, C., Sviridenko, M.: Approximation schemes for minimizing average weighted completion time with release dates. In: Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science, New York City, NY, pp. 32–43 (1999)

    Google Scholar 

  2. van den Akker, J.M.: LP–Based Solution Methods for Single–Machine Scheduling Problems. PhD thesis, Eindhoven University of Technology, Eindhoven, The Netherlands (1994)

    Google Scholar 

  3. Anderson, E.J., Potts, C.N.: On-line scheduling of a single machine to minimize total weighted completion time. Mathematics of Operations Research 29, 686–697 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Baker, K.R.: Introduction to Sequencing and Scheduling. John Wiley & Sons, New York (1974)

    Google Scholar 

  5. Cavalcante, C.C.B., de Souza, C.C., Savelsbergh, M.W.P., Wang, Y., Wolsey, L.A.: Scheduling projects with labor constraints. Discrete Applied Mathematics 112, 27–52 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chakrabarti, S., Muthukrishnan, S.: Resource scheduling for parallel database and scientific applications. In: Proceedings of the 8th Annual ACM Symposium on Parallel Algorithms and Architectures, Padua, Italy, pp. 329–335 (1996)

    Google Scholar 

  7. Chakrabarti, S., Phillips, C., Schulz, A.S., Shmoys, D.B., Stein, C., Wein, J.: Improved scheduling algorithms for minsum criteria. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 646–657. Springer, Heidelberg (1996)

    Google Scholar 

  8. Chan, L.M.A., Muriel, A., Simchi-Levi, D.: Parallel machine scheduling, linear programming and list scheduling heuristics. Operations Research 46, 729–741 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chekuri, C.S., Johnson, R., Motwani, R., Natarajan, B., Rau, B.R., Schlansker, M.: Profile–driven instruction level parallel scheduling with applications to super blocks. In: Proceedings of the 29th Annual International Symposium on Microarchitecture, Paris, France, pp. 58–67 (1996)

    Google Scholar 

  10. Chekuri, C.S., Motwani, R.: Precedence constrained scheduling to minimize weighted completion time on a single machine. Discrete Applied Mathematics 98, 29–38 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chekuri, C.S., Motwani, R., Natarajan, B., Stein, C.: Approximation techniques for average completion time scheduling. SIAM Journal on Computing 31, 146–166 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Correa, J.R., Schulz, A.S.: Single machine scheduling with precedence constraints. In: Bienstock, D., Nemhauser, G.L. (eds.) IPCO 2004. LNCS, vol. 3064, pp. 283–297. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Dyer, M.E., Wolsey, L.A.: Formulating the single machine sequencing problem with release dates as a mixed integer program. Discrete Applied Mathematics 26, 255–270 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  14. Epstein, L., van Stee, R.: Lower bounds for on-line single machine scheduling. Theoretical Computer Science 299, 439–450 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Goemans, M.X.: A supermodular relaxation for scheduling with release dates. In: Cunningham, W.H., Queyranne, M., McCormick, S.T. (eds.) IPCO 1996. LNCS, vol. 1084, pp. 288–300. Springer, Heidelberg (1996)

    Google Scholar 

  16. Goemans, M.X.: Improved approximation algorithms for scheduling with release dates. In: Proceedings of the 8th Annual ACM–SIAM Symposium on Discrete Algorithms, New Orleans, LA, pp. 591–598 (1997)

    Google Scholar 

  17. Goemans, M.X., Queyranne, M., Schulz, A.S., Skutella, M., Wang, Y.: Single machine scheduling with release dates. SIAM Journal on Discrete Mathematics 15, 165–192 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Goemans, M.X., Wein, J., Williamson, D.P.: A 1.47-approximation algorithm for a preemptive single-machine scheduling problem. Operations Research Letters 26, 149–154 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Goemans, M.X., Williamson, D.P.: Two-dimensional Gantt charts and a scheduling algorithm of Lawler. SIAM Journal on Discrete Mathematics 13, 281–294 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics 5, 287–326 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hall, L.A., Schulz, A.S., Shmoys, D.B., Wein, J.: Scheduling to minimize average completion time: Off-line and on-line approximation algorithms. Mathematics of Operations Research 22, 513–544 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hall, L.A., Shmoys, D.B., Wein, J.: Scheduling to minimize average completion time: Off-line and on-line algorithms. In: Proceedings of the 7th Annual ACM–SIAM Symposium on Discrete Algorithms, Atlanta, GA, pp. 142–151 (1996)

    Google Scholar 

  23. Hoogeveen, J.A., Vestjens, A.P.A.: Optimal on-line algorithms for single-machine scheduling. In: Cunningham, W.H., Queyranne, M., McCormick, S.T. (eds.) IPCO 1996. LNCS, vol. 1084, pp. 404–414. Springer, Heidelberg (1996)

    Google Scholar 

  24. Labetoulle, J., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Preemptive scheduling of uniform machines subject to release dates. In: Pulleyblank, W.R. (ed.) Progress in Combinatorial Optimization, pp. 245–261. Academic Press, New York (1984)

    Google Scholar 

  25. Margot, F., Queyranne, M., Wang, Y.: Decomposition, network flows and a precedence constrained single machine scheduling problem. Operations Research 51, 981–992 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Möhring, R.H., Schulz, A.S., Stork, F., Uetz, M.: Solving project scheduling problems by minimum cut computations. Management Science 49, 330–350 (2003)

    Article  Google Scholar 

  27. Möhring, R.H., Schulz, A.S., Uetz, M.: Approximation in stochastic scheduling: The power of LP-based priority policies. Journal of the ACM 46, 924–942 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  29. Phillips, C., Stein, C., Wein, J.: Minimizing average completion time in the presence of release dates. Mathematical Programming 82, 199–223 (1998)

    MathSciNet  MATH  Google Scholar 

  30. Potts, C.N.: An algorithm for the single machine sequencing problem with precedence constraints. Mathematical Programming Studies 13, 78–87 (1980)

    MATH  MathSciNet  Google Scholar 

  31. Queyranne, M.: Structure of a simple scheduling polyhedron. Mathematical Programming 58, 263–285 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  32. Savelsbergh, M.W.P., Uma, R.N., Wein, J.M.: An experimental study of LP-based approximation algorithms for scheduling problems. In: Proceedings of the 9th Annual ACM–SIAM Symposium on Discrete Algorithms, San Francisco, CA, pp. 453–462 (1998)

    Google Scholar 

  33. Schulz, A.S.: Polytopes and scheduling. PhD thesis, TU Berlin, Germany (1996)

    Google Scholar 

  34. Schulz, A.S.: Scheduling to minimize total weighted completion time: Performance guarantees of LP-based heuristics and lower bounds. In: Cunningham, W.H., Queyranne, M., McCormick, S.T. (eds.) IPCO 1996. LNCS, vol. 1084, pp. 301–315. Springer, Heidelberg (1996)

    Google Scholar 

  35. Schulz, A.S., Skutella, M.: Random-based scheduling: New approximations and LP lower bounds. In: Rolim, J.D.P. (ed.) RANDOM 1997. LNCS, vol. 1269, pp. 119–133. Springer, Heidelberg (1997)

    Google Scholar 

  36. Schulz, A.S., Skutella, M.: The power of α-points in preemptive single machine scheduling. Journal of Scheduling 5, 121–133 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  37. Schulz, A.S., Skutella, M.: Scheduling unrelated machines by randomized rounding. SIAM Journal on Discrete Mathematics 15, 450–469 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  38. Schuurman, P., Woeginger, G.J.: Polynomial time approximation algorithms for machine scheduling: Ten open problems. Journal of Scheduling 2, 203–213 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  39. Sgall, J.: On-line scheduling — a survey. In: Fiat, A. (ed.) Dagstuhl Seminar 1996. LNCS, vol. 1442, pp. 196–231. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  40. Shmoys, D.B., Tardos, É.: An approximation algorithm for the generalized assignment problem. Mathematical Programming 62, 461–474 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sidney, J.B.: Decomposition algorithms for single-machine sequencing with precedence relations and deferral costs. Operations Research 23, 283–298 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  42. Skutella, M.: Approximation and randomization in scheduling. PhD thesis, Technische Universität Berlin, Germany (1998)

    Google Scholar 

  43. Skutella, M., Uetz, M.: Scheduling precedence-constrained jobs with stochastic processing times on parallel machines. In: Proceedings of the 12th Annual ACM–SIAM Symposium on Discrete Algorithms, Washington, DC, pp. 589–590 (2001)

    Google Scholar 

  44. Skutella, M., Uetz, M.: Stochastic machine scheduling with precedence constraints. SIAM Journal on Computing (2005) (to appear)

    Google Scholar 

  45. Smith, W.E.: Various optimizers for single-stage production. Naval Research and Logistics Quarterly 3, 59–66 (1956)

    Article  MathSciNet  Google Scholar 

  46. Sousa, J.P.: Time indexed formulations of non-preemptive single-machine scheduling problems. PhD thesis, Université Catholique de Louvain (1989)

    Google Scholar 

  47. Stein, C., Wein, J.: On the existence of schedules that are near-optimal for both makespan and total weighted completion time. Operations Research Letters 21, 115–122 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  48. Stougie, L., Vestjens, A.P.A.: Randomized algorithms for on-line scheduling problems: How low can’t you go? Operations Research Letters 30, 89–96 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  49. Uma, R.N., Wein, J.M.: On the relationship between combinatorial and LP-based approaches to NP-hard scheduling problems. In: Bixby, R.E., Boyd, E.A., Ríos-Mercado, R.Z. (eds.) IPCO 1998. LNCS, vol. 1412, pp. 394–408. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  50. Vestjens, A.P.A.: On-line machine scheduling. PhD thesis, Eindhoven University of Technology, The Netherlands (1997)

    Google Scholar 

  51. Woeginger, G.J.: On the approximability of average completion time scheduling under precedence constraints. Discrete Applied Mathematics 131, 237–252 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  52. Wolsey, L.A.: Mixed integer programming formulations for production planning and scheduling problems (1985); Invited talk at the 12th International Symposium on Mathematical Programming. MIT, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Skutella, M. (2006). List Scheduling in Order of α-Points on a Single Machine. In: Bampis, E., Jansen, K., Kenyon, C. (eds) Efficient Approximation and Online Algorithms. Lecture Notes in Computer Science, vol 3484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11671541_9

Download citation

  • DOI: https://doi.org/10.1007/11671541_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32212-2

  • Online ISBN: 978-3-540-32213-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics