Skip to main content

Recovery of Sparse Representations by Polytope Faces Pursuit

  • Conference paper
Independent Component Analysis and Blind Signal Separation (ICA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3889))

Abstract

We introduce a new greedy algorithm to find approximate sparse representations \(\vec s\) of \(\vec x={\vec A}\vec s\) by finding the Basis Pursuit (BP) solution of the linear program \(\min\{{\|s\|}_{\vec 1} \mid {\vec x}={\vec A}{\vec s}\}\). The proposed algorithm is based on the geometry of the polar polytope \(P^* = \{{\vec c} \mid {\tilde{\vec A}}^T{\vec c} \le {\vec 1} \}\) where \({\tilde{\vec A}} = [{\vec A},-{\vec A}]\) and searches for the vertex \({\vec c}^*\in P^*\) which maximizes \({\vec x}^{T}{\vec c}\) using a path following method. The resulting algorithm is in the style of Matching Pursuits (MP), in that it adds new basis vectors one at a time, but it uses a different correlation criterion to determine which basis vector to add and can switch out basis vectors as necessary. The algorithm complexity is of a similar order to Orthogonal Matching Pursuits (OMP). Experimental results show that this algorithm, which we call Polytope Faces Pursuit, produces good results on examples that are known to be hard for MP, and it is faster than the interior point method for BP on the experiments presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kreutz-Delgado, K., Murray, J.F., Rao, B.D., Engan, K., Lee, T.W., Sejnowski, T.J.: Dictionary learning algorithms for sparse representation. Neural Computation 15, 349–396 (2003)

    Article  MATH  Google Scholar 

  2. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing 20, 33–61 (1998)

    Article  MathSciNet  Google Scholar 

  3. Mallat, S., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing 41, 3397–3415 (1993)

    Article  MATH  Google Scholar 

  4. Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In: Conference Record of The Twenty-Seventh Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, pp. 40–44 (1993)

    Google Scholar 

  5. Gribonval, R., Nielsen, M.: Approximation with highly redundant dictionaries. In: Wavelets: Applications in Signal and Image Processing, Proc. SPIE 2003, San Diego, USA, pp. 216–227 (2003)

    Google Scholar 

  6. Tropp, J.A.: Greed is good: Algorithmic results for sparse approximation. IEEE Transactions on Information Theory 50, 2231–2242 (2004)

    Article  MathSciNet  Google Scholar 

  7. Fuchs, J.J.: On sparse representations in arbitrary redundant bases. IEEE Transactions on Information Theory 50, 1341–1344 (2004)

    Article  Google Scholar 

  8. Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization. Proc. Nat. Aca. Sci. 100, 2197–2202 (2003)

    Google Scholar 

  9. Donoho, D.L.: Neighborly polytopes and sparse solutions of underdetermined linear equations. Technical report, Statistics Department, Stanford University (2004)

    Google Scholar 

  10. Plumbley, M.D.: Polar polytopes and recovery of sparse representations (2005) (submitted for publication)

    Google Scholar 

  11. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons Ltd, Chichester (1998)

    MATH  Google Scholar 

  12. Grünbaum, B.: Convex Polytopes, 2nd edn. Graduate Texts in Mathematics, vol. 221. Springer, New York (2003)

    Google Scholar 

  13. Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Computing 25, 227–234 (1995)

    Article  MathSciNet  Google Scholar 

  14. Andrle, M., Rebollo-Neira, L.: A swapping-based refinement of orthogonal matching pursuit strategies. Signal Processing (2005) (to appear in Signal Processing)

    Google Scholar 

  15. Kvasnica, M., Grieder, P., Baotić, M.: Multi-Parametric Toolbox, MPT (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Plumbley, M.D. (2006). Recovery of Sparse Representations by Polytope Faces Pursuit. In: Rosca, J., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2006. Lecture Notes in Computer Science, vol 3889. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11679363_26

Download citation

  • DOI: https://doi.org/10.1007/11679363_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32630-4

  • Online ISBN: 978-3-540-32631-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics