Skip to main content

Efficient Enumeration of Phylogenetically Informative Substrings

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3909))

Abstract

We study the problem of enumerating substrings that are common amongst genomes that share evolutionary descent. For example, one might want to enumerate all identical (therefore conserved) substrings that are shared between all mammals and not found in non-mammals. Such collection of substrings may be used to identify conserved subsequences or to construct sets of identifying substrings for branches of a phylogenetic tree. For two disjoint sets of genomes on a phylogenetic tree, a substring is called a discriminating substring or a tag if it is found in all of the genomes of one set and none of the genomes of the other set. Given a phylogeny for a set of m species, each with a genome of length at most n, we develop a suffix-tree based algorithm to find all tags in O(nm log2 m) time. We also develop a sublinear space algorithm (at the expense of running time) that is more suited for very large data sets. We next consider a stochastic model of evolution to understand how tags arise. We show that in this setting, a simple process of tag generation essentially captures all possible ways of generating tags. We use this insight to develop a faster tag discovery algorithm with a small chance of error. However, tags are not guaranteed to exist in a given data set. We thus generalize the notion of a tag from a single substring to a set of substrings whereby each species in one set contains a large fraction of the substrings while each species in the other set contains only a small fraction of the substrings. We study the complexity of this problem and give a simple linear programming based approach for finding approximate generalized tag sets. Finally, we use our tag enumeration algorithm to analyze a phylogeny containing 57 whole microbial genomes. We find tags for all nodes in the phylogeny except the root for which we find generalized tag sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bejerano, G., Siepel, A., Kent, W., Haussler, D.: Computational screening of conserved genomic DNA in search of functional noncoding elements. Nature Methods 2(7), 535–545 (2005)

    Article  Google Scholar 

  2. Siepel, A., Bejerano, G., Pedersen, J., Hinrichs, A., Hou, M., Rosenbloom, K., Clawson, H., Spieth, J., Hillier, L., Richards, S., Weinstock, G., Wilson, R.K., Gibbs, R., Kent, W., Miller, W., Haussler, D.: Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Research 15(8), 1034–1050 (2005)

    Article  Google Scholar 

  3. Bejerano, G., Pheasant, M., Makunin, I., Stephen, S., Kent, W., Mattick, J., Haussler, D.: Ultraconserved elements in the human genome. Science 304(5675), 1321–1325 (2004)

    Article  Google Scholar 

  4. Amann, R., Ludwig, W.: Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology. FEMS Microbiology Reviews 24(5), 555–565 (2000)

    Article  Google Scholar 

  5. Angelov, S., Harb, B., Kannan, S., Khanna, S., Kim, J., Wang, L.S.: Genome identification and classification by short oligo arrays. In: Proceedings of the Fourth Annual Workshop on Algorithms in Bioinformatics (2004)

    Google Scholar 

  6. Wolf, Y.I., Rogozin, I.B., Grishin, N.V., Koonin, E.V.: Genome trees and the tree of life. Trends in Genetics 18(9), 472–479 (2002)

    Article  Google Scholar 

  7. Weiner, P.: Linear pattern matching algorithms. In: Proc. of the 14th IEEE Symposium on Switching and Automata Theory, pp. 1–11 (1973)

    Google Scholar 

  8. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University Press, New York (1997)

    Book  MATH  Google Scholar 

  9. Hui, L.: Color set size problem with applications to string matching. In: Apostolico, A., Galil, Z., Manber, U., Crochemore, M. (eds.) CPM 1992. LNCS, vol. 644, pp. 227–240. Springer, Heidelberg (1992)

    Google Scholar 

  10. McCreight, E.M.: A space-economical suffix tree construction algorithm. Journal of the ACM (JACM) 23(2), 262–272 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ukkonen, E.: On-line construction of suffix-trees. Algorithmica 14, 249–260 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM Journal of Computing 13(2), 338–355 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  13. Schieber, B., Vishkin, U.: On finding lowest common ancestors: Simplifications and parallelization. SIAM Journal of Computing 17, 1253–1262 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Brown, M.R., Tarjan, R.E.: Design and analysis of data structures for representing sorted lists. SIAM Journal of Computing 9(3), 594–614 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chang, W.I., Lawler, E.L.: Sublinear approximate string matching and biological applications. Algorithmica 12, 327–343 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Thomas, J., et al.: Comparative analyses of multi-species sequences from targeted genomic regions. Nature 424(6950), 788–793 (2003)

    Article  Google Scholar 

  17. Maidak, B.L., Cole, J.R., Lilburn, T.G., Parker, C.T.J., Sax man, P.R., Farris, R.J., Garrity, G.M., Olsen, G.J., Schmidt, T.M., Tie dje, J.M.: The RDP-II (ribosomal database project). Nucl. Acids. Res. 29(1), 173–174 (2001)

    Article  Google Scholar 

  18. Jukes, T.H., Cantor, C.: Mammalian Protein Metabolism, chapter Evolution of protein molecules. Academic Press, New York (1969)

    Google Scholar 

  19. Matveeva, O.V., Shabalina, S.A., Nemtsov, V.A., Tsodikov, A.D., Gesteland, R.F., Atkins, J.F.: Thermodynamic calculations and statistical correlations for oligo-probes design. Nucl. Acids. Res. 31(14), 4211–4217 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Angelov, S., Harb, B., Kannan, S., Khanna, S., Kim, J. (2006). Efficient Enumeration of Phylogenetically Informative Substrings. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M. (eds) Research in Computational Molecular Biology. RECOMB 2006. Lecture Notes in Computer Science(), vol 3909. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11732990_22

Download citation

  • DOI: https://doi.org/10.1007/11732990_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33295-4

  • Online ISBN: 978-3-540-33296-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics