Skip to main content

Dynamic Surface Deformation and Modeling Using Rubber Sweepers

  • Conference paper
Technologies for E-Learning and Digital Entertainment (Edutainment 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3942))

Abstract

We introduce a new surface deformation and modeling method in this paper. Referring to the swept volume generation, the surface is pulled or pushed along a trajectory curve. The key point is the sweeping function. Surface points are moved to where they should be during sweeping operations according to the global parameter, which is determined by topological distance. An index factor controls how much the surface deforms around the handle point. The proposed method is easy to extend to fit different applications such as various constraints, local deformation and animations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barr, A.H.: Global and local deformation of solid primitives. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, vol. 18(3), pp. 21–30 (1984)

    Google Scholar 

  2. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, vol. 20(4), pp. 151–160 (1986)

    Google Scholar 

  3. Hsu, W.H., Hughes, J.F., Kaufman, H.: Direct manipulation of free-form deformations. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, vol. 26(2), pp. 177–184 (1992)

    Google Scholar 

  4. Coquillart, S.: Extended free-form deformation: a sculpting tool for 3D geometric modeling. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, vol. 24(4), pp. 187–196 (1990)

    Google Scholar 

  5. Lazarus, F., Coquillart, S., Jancène, P.: Axial deformations: an intuitive deformation technique. Computer-Aided Design 26(8), 607–613 (1994)

    Article  MATH  Google Scholar 

  6. Zorin, D., Schröder, P., Sweldens, W.: Interactive multiresolution mesh editing. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, vol. 31(4), pp. 259–268 (1997)

    Google Scholar 

  7. Boier-Martin, I.M., Ronfard, R., Bernardini, F.: Detail-preserving variational surface design with multiresolution constraints. In: Proceedings of Shape Modeling International (SMI) 2004, Genova, Italy, pp. 119–128 (June 2004)

    Google Scholar 

  8. Wang, G., Sun, J., Hua, X.: The sweep-envelope differential equation algorithm for general deformed swept volumes. Computer Aided Geometric Design 17(5), 399–418 (2000)

    Article  MathSciNet  Google Scholar 

  9. Wang, G., Sun, J.: Shape control of swept surface with profiles. Computer-Aided Design 33(12), 893–902 (2001)

    Article  Google Scholar 

  10. Weinert, K., Du, S., Damm, P., Stautner, M.: Swept volume generation for the simulation of machining processes. International Journal of Machine Tools & Manufacture 44, 617–628 (2004)

    Article  Google Scholar 

  11. Choi, B.K., Lee, C.: Sweep surfaces modeling via coordinate transformations and blending. Computer-Aided Design 22(2), 87–96 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Piegel, L., Tiller, W.: The NURBS Book. Springer, Berlin (1997)

    Google Scholar 

  13. Angelidis, A., Wyvill, G., Cani, M.P.: Sweepers: swept user-defined tools for modeling by deformation. In: International Conference on Shape Modeling and Applications 2004 (SMI 2004), pp. 63–73 (2004)

    Google Scholar 

  14. Dyn, N., Levin, D., Gregory, J.A.: A butterfly subdivision scheme for surface interpolation with tension control. ACM Transactions on Graphics 9(2), 160–169 (1990)

    Article  MATH  Google Scholar 

  15. Zorin, D., Schröder, P., Sweldens, W.: Interpolating subdivision for meshes with arbitrary topology. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, vol. 30, pp. 189–192 (1996)

    Google Scholar 

  16. Zhang, C., Zhang, N., Li, C., Wang, G.: Marker-controlled perception-based mesh segmentation. In: Proceedings of the Third International Conference on Image and Graphics (ICIG 2004), Hong Kong, China, December 18-20, pp. 390–393 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, C., Ge, W., Wang, G. (2006). Dynamic Surface Deformation and Modeling Using Rubber Sweepers. In: Pan, Z., Aylett, R., Diener, H., Jin, X., Göbel, S., Li, L. (eds) Technologies for E-Learning and Digital Entertainment. Edutainment 2006. Lecture Notes in Computer Science, vol 3942. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11736639_117

Download citation

  • DOI: https://doi.org/10.1007/11736639_117

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33423-1

  • Online ISBN: 978-3-540-33424-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics