Skip to main content

A CGM Algorithm Solving the Longest Increasing Subsequence Problem

  • Conference paper
Computational Science and Its Applications - ICCSA 2006 (ICCSA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3984))

Included in the following conference series:

Abstract

In this paper, we consider parallel algorithm for the longest increasing subsequence problem. Although this problem is primitive combinatorial optimization problem, this is not known to be in the class NC or P-complete, that is, no NC algorithm have been proposed for this problem, and there is no proof which shows the problem is P-complete. We present a coarse grained parallel algorithm that solves the Longest Increasing Subsequence Problem shown as a basis for DNA comparison. It can be implemented in the CGM model with P processors in O(\(N \log_2 {N \over P}\)) time and O(P) communication steps for an input sequence of N integers. This algorithm is based on a new optimal and very simple sequential algorithm having a time complexity of O(N log2 N).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldous, A., Diaconis, P.: Longest Increasing Subsequences: From Patience Sorting to the Baik-Deift-Johansson Theorem. BAMS: Bulletin of the American Mathematical Society 36, 413–432 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bespamyatnikh, S., Segal, M.: Enumerating Longest Increasing Subsequences and Patience Sorting. Information Processing Letters 71(1–2), 7–11 (2000)

    Article  MathSciNet  Google Scholar 

  3. Bose, P., Chan, A., Dehne, F., Latzel, M.: Coarse grained parallel maximum matching in convex bipartite graph. In: Proc. 13th International Parallel Processing Symposium (IPPS 1999), pp. 125–129 (1999)

    Google Scholar 

  4. Cérin, C., Dufourd, C., Myoupo, J.F.: An Efficient Parallel Solution for the Longest Increasing Subsequence Problem. In: Fith International Conference on Computing and Information (ICCI 1993), Sudbury, Ontario, pp. 200–224. IEEE Press, Los Alamitos (1993)

    Google Scholar 

  5. Chan, A., Dehne, F.: A note on coarse grained parallel integer sorting. Parallel Processing Letters 9(4), 533–538 (1999)

    Article  Google Scholar 

  6. Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K., Santos, E., Subramonian, R., Von Eicken, T.: Log”p”:towards a realistic model of parallel computation. In: 4-th ACM SIGPLAN Symp. on Principles and Practices of Parallel Programming, pp. 1–12 (1996)

    Google Scholar 

  7. Dehne, F., Deng, X., Dymond, P., Fabri, A., Khokhar, A.: A randomized parallel 3d convex hull algorithm for coarse grained multicomputers. In: Proc. 7th ACM Symp. on Parallel Algorithms and Architectures, pp. 27–33 (1995)

    Google Scholar 

  8. Dehne, F., Fabri, A., Rau-Chaplin, A.: Scalable parallel computational geometry for coarse grained multicomputers. International Journal on Computational Geometry 6(3), 379–400 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Diallo, M., Ferreira, A., Rau-Chaplin, A., Ubeda, S.: Scalable 2d convex hull and triangulation algorithms for coarse grained multicomputers. Journal of Parallel and Distributed Computing 56(1), 47–70 (1999)

    Article  MATH  Google Scholar 

  10. Erdos, P., Szekers, A.: A combinatorial problem in geometry. Compositio Mathematica 2, 463–470 (1935)

    MathSciNet  Google Scholar 

  11. Ferreira, A., Schabanel, N.: A randomized bsp/cgm algorithm for the maximal independant set problem. Parallel Processing Letters 9(3), 411–422 (1999)

    Article  MathSciNet  Google Scholar 

  12. Fredman, M.L.: On Computing the Length of Longest Increasing Subsequences. Discrete Mathematics, 29–35 (1975)

    Google Scholar 

  13. Garcia, T., Myoupo, J.F., Semé, D.: A work-optimal cgm algorithm for the longest increasing subsequence problem. In: International Conference on Parallel and Distributed Processing Techniques and Applications, PDPTA 2001 (2001)

    Google Scholar 

  14. Garcia, T., Myoupo, J.F., Semé, D.: A coarse-grained multicomputer algorithm for the longest common subsequence problem. In: 11-th Euromicro Conference on Parallel Distributed and Network based Processing, PDP 2003 (2003)

    Google Scholar 

  15. Garcia, T., Semé, D.: A coarse-grained multicomputer algorithm for the longest repeated suffix ending at each point in a word. In: International Conference on Computational Science and its Applications, ICCSA 2003 (2003)

    Google Scholar 

  16. Garcia, T., Semé, D.: A load balancing technique for some coarse-grained multicomputer algorithms. In: 21th International Conference on Computers and Their Applications (CATA-2006), (2006) (to appear)

    Google Scholar 

  17. Goudreau, M., Rao, S., Lang, K., Suel, T., Tsantilas, T.: Towards efficiency and portability: Programming with the bsp model. In: 8th Annual ACM Symp. on Parallel Algorithms and Architectures (SPAA 1996), pp. 1–12 (1996)

    Google Scholar 

  18. Gram, A.: Raisonner pour programmer. Dunod, Paris (1988)

    Google Scholar 

  19. Gries, D.: The Science of Programming. Springer, Heidelberg (1981) (fifth printing 1989)

    Google Scholar 

  20. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  21. Jacobson, G., Vo, K.P.: Heaviest Increasing/Common Subsequence Problems. In: Apostolico, A., Galil, Z., Manber, U., Crochemore, M. (eds.) CPM 1992. LNCS, vol. 644, pp. 52–66. Springer, Heidelberg (1992)

    Google Scholar 

  22. Kim, S.R., Park, K.: Fully scalable fault-tolerant simulations for bsp and cgm. Journal of Parallel and Distributed Computing 60, 1531–1560 (2000)

    Article  MATH  Google Scholar 

  23. Manber, U.: Introduction to Algorithms, a creative approach. Adisson-Wesley (1989)

    Google Scholar 

  24. Misra, J.: A Technique of Algorithm Construction on Sequence. IEEE Trans. Software Engineering SE-4(1), 65–69 (1978)

    Article  Google Scholar 

  25. Szymanski, T.G.: A Special Case of the Max Common Subsequences Problem. Technical report, Dep. Elec. Eng. Princeton University, Princeton N.J. Tech. Rep (1975)

    Google Scholar 

  26. Valiant, L.G.: A bridging model for parallel computation. Communications of the ACM 33(8), 103–111 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Semé, D. (2006). A CGM Algorithm Solving the Longest Increasing Subsequence Problem. In: Gavrilova, M.L., et al. Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol 3984. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751649_2

Download citation

  • DOI: https://doi.org/10.1007/11751649_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34079-9

  • Online ISBN: 978-3-540-34080-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics