Skip to main content

Extracting Programs from Constructive HOL Proofs Via IZF Set-Theoretic Semantics

  • Conference paper
Automated Reasoning (IJCAR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4130))

Included in the following conference series:

Abstract

Church’s Higher Order Logic is a basis for proof assistants — HOL and PVS. Church’s logic has a simple set-theoretic semantics, making it trustworthy and extensible. We factor HOL into a constructive core plus axioms of excluded middle and choice. We similarly factor standard set theory, ZFC, into a constructive core, IZF, and axioms of excluded middle and choice. Then we provide the standard set-theoretic semantics in such a way that the constructive core of HOL is mapped into IZF. We use the disjunction, numerical existence and term existence properties of IZF to provide a program extraction capability from proofs in the constructive core.

We can implement the disjunction and numerical existence properties in two different ways: one modifying Rathjen’s realizability for CZF and the other using a new direct weak normalization result for intensional IZF by Moczydłowski. The latter can also be used for the term existence property.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Church, A.: A formulation of the simple theory of types. The Journal of Symbolic Logic 5, 55–68 (1940)

    MathSciNet  Google Scholar 

  2. Harrison, J.: HOL Light: A tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  3. Berghofer, S.: Proofs, Programs and Executable Specifications in Higher Order Logic. PhD thesis, Technische Universität München (2004)

    Google Scholar 

  4. Berghofer, S., Nipkow, T.: Executing higher order logic. In: Callaghan, P., Luo, Z., McKinna, J., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277, Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Coquand, T., Paulin-Mohring, C.: Inductively defined types, preliminary version. In: Martin-Löf, P., Mints, G. (eds.) COLOG 1988. LNCS, vol. 417, pp. 50–66. Springer, Heidelberg (1990)

    Google Scholar 

  6. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development; Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  7. Benl, H., Berger, U., Schwichtenberg, H., others,: Proof theory at work: Program development in the Minlog system. In: Bibel, W., Schmitt, P.G. (eds.) Automated Deduction, vol. II, Kluwer, Dordrecht (1998)

    Google Scholar 

  8. Allen, S.F., et al.: Innovations in computational type theory using Nuprl (to appear, 2006)

    Google Scholar 

  9. Constable, R.L., et al.: Implementing Mathematics with the Nuprl Proof Development System. Prentice-Hall, NJ (1986)

    Google Scholar 

  10. Martin-Löf, P.: Constructive mathematics and computer programming. In: Proceedings of the Sixth International Congress for Logic, Methodology, and Philosophy of Science, pp. 153–175. North-Holland, Amsterdam (1982)

    Chapter  Google Scholar 

  11. Nordström, B., Petersson, K., Smith, J.M.: Programming in Martin-Löf’s Type Theory. Oxford Sciences Publication, Oxford (1990)

    MATH  Google Scholar 

  12. Augustsson, L., Coquand, T., Nordström, B.: A short description of another logical framework. In: Proceedings of the First Annual Workshop on Logical Frameworks, Sophia-Antipolis, France, pp. 39–42 (1990)

    Google Scholar 

  13. The Coq Development Team: The Coq Proof Assistant Reference Manual – Version V8.0 (2004), http://coq.inria.fr

  14. Hickey, J., et al.: MetaPRL — A modular logical environment. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 287–303. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Allen, S., et al.: The Nuprl open logical environment. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 170–176. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Aczel, P.: The type theoretic interpretation of constructive set theory. In: MacIntyre, A., Pacholski, L., Paris, J. (eds.) Logic Colloquium 1977, North-Holland, Amsterdam (1978)

    Google Scholar 

  17. Howe, D.J.: Semantic foundations for embedding HOL in Nuprl. In: Nivat, M., Wirsing, M. (eds.) AMAST 1996. LNCS, vol. 1101, pp. 85–101. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  18. Howe, D.J.: Toward sharing libraries of mathematics between theorem provers. In: Frontiers of Combining Systems, FroCoS 1998, ILLC, Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  19. Rathjen, M.: The disjunction and related properties for constructive Zermelo-Fraenkel set theory. Journal of Symbolic Logic 70, 1233–1254 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Moczydłowski, W.: Normalization of IZF with Replacement. Technical Report 2006-2024, Computer Science Department, Cornell University (2006)

    Google Scholar 

  21. Gordon, M., Melham, T.: Introduction to HOL: A Theorem Proving Environment for Higher-Order Logic. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  22. Myhill, J.: Some properties of intuitionistic Zermelo-Fraenkel set theory. In: Cambridge Summer School in Mathematical Logic, vol. 29, pp. 206–231. Springer, Heidelberg (1973)

    Chapter  Google Scholar 

  23. Beeson, M.J.: Foundations of Constructive Mathematics. Springer, Heidelberg (1985)

    MATH  Google Scholar 

  24. McCarty, D.: Realizability and recursive set theory. Journal of Pure and Applied Logic 32, 153–183 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  25. Friedman, H.: The consistency of classical set theory relative to a set theory with intuitionistic logic. The Journal of Symbolic Logic, 315–319 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Constable, R., Moczydłowski, W. (2006). Extracting Programs from Constructive HOL Proofs Via IZF Set-Theoretic Semantics. In: Furbach, U., Shankar, N. (eds) Automated Reasoning. IJCAR 2006. Lecture Notes in Computer Science(), vol 4130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11814771_16

Download citation

  • DOI: https://doi.org/10.1007/11814771_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37187-8

  • Online ISBN: 978-3-540-37188-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics