Skip to main content

Making Change and Finding Repfigits: Balancing a Knapsack

  • Conference paper
Mathematical Software - ICMS 2006 (ICMS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4151))

Included in the following conference series:

Abstract

We will discuss knapsack problems that arise in certain computational number theory settings. A common theme is that the search space for the standard real relaxation is large; in a sense this translates to a poor choice of variables. Lattice reduction methods have been developed in the past few years to improve handling of such problems. We show explicitly how they may be applied to computation of Frobenius instances, Keith numbers (also called “repfigits”), and as a first step in computation of Frobenius numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aardal, K., Hurkens, C.A.J., Lenstra, A.K.: Solving a system of linear diophantine equations with lower and upper bounds on the variables. Mathematics of Operations Research 25(3), 427–442 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aardal, K., Lenstra, A.K.: Hard equality constrained integer knapsacks. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 350–366. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Aardal, K., Weismantel, R., Wolsey, L.A.: Non-standard approaches to integer programming. Discrete Appl. Math. 123(1-3), 5–74 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beihoffer, D., Hendry, J., Nijenhuis, A., Wagon, S.: Faster algorithms for frobenius numbers. Elec. J. Combinatorics 12 (2005)

    Google Scholar 

  5. Blankenship, W.: Algorithm 288: Solution of simultaneous linear diophantine equations. Communications of the ACM 9(7), 514 (1966)

    Article  Google Scholar 

  6. COmputational INfrastructure for Operations Research (COIN-OR), http://www.coin-or.org/documentation.html

  7. Conti, P., Traverso, C.: Buchberger algorithm and integer programming. In: Mattson, H.F., Rao, T.R.N., Mora, T. (eds.) AAECC 1991. LNCS, vol. 539, pp. 130–139. Springer, Heidelberg (1991)

    Google Scholar 

  8. Dantzig, G.B.: Linear Programming - 1: Introduction. Princeton Landmarks in Mathematics and Physics. Princeton University Press, Princeton (1963)

    Google Scholar 

  9. Gómez, D., Gutierrez, J., Ibeas, Á.: Circulant digraphs and monomial ideals. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 196–207. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Keith, M.: Determination of all keith numbers up to 1019 (1998), available from, http://users.aol.com/s6sj7gt/keithnum.htm

  11. Lenstra, A.K., Lenstra Jr., H.W., Lovasz, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261(4), 515–534 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lichtblau, D.: Revisiting strong Gröbner bases over Euclidean domains (manuscript, 2003)

    Google Scholar 

  13. Matthews, K.: Short solutions of a x=b using a lll-based hermite normal form algorithm (manuscript, 2001)

    Google Scholar 

  14. Nguyen, P.: Cryptanalysis of the goldreich-goldwasser-halevi cryptosystem from crypto 1997. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 288–304. Springer, Heidelberg (1999)

    Google Scholar 

  15. Schnorr, C.-P., Euchner, M.: Lattice basis reduction: Improved practical algorithms and solving subset sum problems. In: Budach, L. (ed.) FCT 1991. LNCS, vol. 529, pp. 68–85. Springer, Heidelberg (1991)

    Google Scholar 

  16. Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons, Inc., New York (1986)

    MATH  Google Scholar 

  17. Wagon, S., Einstein, D., Lichtblau, D., Strzebonski, A.: Frobenius numbers by lattice enumeration (submitted, 2006)

    Google Scholar 

  18. Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media, Champaign (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lichtblau, D. (2006). Making Change and Finding Repfigits: Balancing a Knapsack. In: Iglesias, A., Takayama, N. (eds) Mathematical Software - ICMS 2006. ICMS 2006. Lecture Notes in Computer Science, vol 4151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11832225_16

Download citation

  • DOI: https://doi.org/10.1007/11832225_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38084-9

  • Online ISBN: 978-3-540-38086-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics