Skip to main content

Optic Flow from Multi-scale Dynamic Anchor Point Attributes

  • Conference paper
Image Analysis and Recognition (ICIAR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4141))

Included in the following conference series:

Abstract

Optic flow describes the apparent motion that is present in an image sequence. We show the feasibility of obtaining optic flow from dynamic properties of a sparse set of multi-scale anchor points. Singular points of a Gaussian scale space image are identified as feasible anchor point candidates and analytical expressions describing their dynamic properties are presented. Advantages of approaching the optic flow estimation problem using these anchor points are that (i) in these points the notorious aperture problem does not manifest itself, (ii) it combines the strengths of variational and multi-scale methods, (iii) optic flow definition becomes independent of image resolution, (iv) computations of the components of the optic flow field are decoupled and that (v) the feature set inducing the optic flow field is very sparse (typically \(<{{1}\over{2}}\%\) of the number of pixels in a frame). A dense optic flow vector field is obtained through projection into a Sobolev space defined by and consistent with the dynamic constraints in the anchor points. As opposed to classical optic flow estimation schemes the proposed method accounts for an explicit scale component of the vector field, which encodes some dynamic differential flow property.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  2. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Nagel, H.H.: Displacement vectors derived from 2nd order intensity variations in image sequences. Computer Vision, Graphics and Image Processing 21, 85–117 (1983)

    Article  Google Scholar 

  4. Uras, S., Girosi, F., Verri, A., Torre, V.: A computational approach to motion perception. Biological Cybernetics 60, 79–87 (1988)

    Article  Google Scholar 

  5. Anandan, P.: A computational framework and an algorithm for the measurement of visual motion. International Journal of Computer Vision 2, 283–310 (1989)

    Article  Google Scholar 

  6. Singh, A.: Optic Flow Computation: a Unified Perspective. IEEE Computer Society Press, Los Alamitos (1991)

    Google Scholar 

  7. Heeger, D.: Optical flow using spatio-temporal filters. International Journal of Computer Vision 1, 279–302 (1988)

    Article  Google Scholar 

  8. Fleet, D.J., Jepson, A.D.: Computation of component image velocity from local phase information. International Journal of Computer Vision 5, 77–104 (1990)

    Article  Google Scholar 

  9. Terzopoulos, D.: Image analysis using multigrid relaxation methods. IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 129–139 (1986)

    Article  Google Scholar 

  10. Wu, Y.T., Kanade, T., Li, C.C., Cohn, J.: Image registration using wavelet-based motion model. International Journal of Computer Vision 38, 129–152 (2000)

    Article  MATH  Google Scholar 

  11. Florack, L.M.J., Niessen, W.J., Nielsen, M.: The intrinsic structure of optic flow incorporating measurement duality. International Journal of Computer Vision 27, 263–286 (1998)

    Article  Google Scholar 

  12. Suinesiaputra, A., Florack, L.M.J., Westenberg, J.J.M., ter Haar Romeny, B.M., Reiber, J.H.C., Lelieveldt, B.P.F.: Optic flow computation from cardiac MR tagging using a multiscale differential method—a comparative study with velocity-encoded mri, pp. 483–490

    Google Scholar 

  13. Werkhoven, P., Toet, A., Koenderink, J.J.: Displacement estimates through adaptive affinities. IEEE Trans. Pattern Anal. Mach. Intell. 12, 658–663 (1990)

    Article  Google Scholar 

  14. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. International Journal of Computer Vision 12, 43–77 (1994)

    Article  Google Scholar 

  15. Bruhn, A., Weickert, J., Feddern, C., Kohlberger, T., Schnörr, C.: Variational optical flow computation in real time. IEEE Transactions on Image Progressing 14, 608–615 (2005)

    Article  Google Scholar 

  16. Unser, M., Aldroubi, A.: A general sampling theory for nonideal acquisition devices. IEEE Transactions on Signal Processing 42, 2915–2925 (1994)

    Article  Google Scholar 

  17. Lillholm, M., Nielsen, M., Griffin, L.D.: Feature-based image analysis. International Journal of Computer Vision 52, 73–95 (2003)

    Article  Google Scholar 

  18. Nielsen, M., Lillholm, M.: What Do Features Tell about Images? In: Kerckhove, M. (ed.) Scale-Space 2001. LNCS, vol. 2106, pp. 39–50. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  19. Janssen, B., Kanters, F., Duits, R., Florack, L.: A linear image reconstruction framework based on Sobolev type inner products. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 85–96. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  20. Haar Romeny, B.M.t.: Front-End Vision and multiscale image analysis. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  21. Lindeberg, T.: Scale-Space Theory in Computer Vision. The Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers, Dordrecht (1994)

    Google Scholar 

  22. Florack, L.M.J.: Image Structure. Computational Imaging and Vision Series, vol. 10. Kluwer Academic Publishers, Dordrecht (1997)

    Google Scholar 

  23. Damon, J.: Local Morse theory for solutions to the heat equation and Gaussian blurring. Journal of Differential Equations 115, 368–401 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Florack, L., Kuijper, A.: The topological structure of scale-space images. Journal of Mathematical Imaging and Vision 12, 65–79 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gilmore, R.: Catastrophe Theory for Scientists and Engineers. Dover Publications, Inc., New York (1993); Originally published by John Wiley & Sons, New York (1981)

    Google Scholar 

  26. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, Inc., New York (1965); Originally published by the National Bureau of Standards (1964)

    Google Scholar 

  27. Wolfram, S.: Mathematica: A System for doing Mathematics by Computer, 2nd edn. Addison-Wesley, Reading (1991)

    Google Scholar 

  28. Kanters, F.: Scalespaceviz (2004), http://www.bmi2.bmt.tue.nl/image-analysis/people/FKanters/Software/ScaleSpaceViz.html

  29. Lindeberg, T.: Feature detection with automatic scale selection. International Journal of Computer Vision 30, 79–116 (1998)

    Article  Google Scholar 

  30. Koenderink, J.J.: A hitherto unnoticed singularity of scale-space. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 1222–1224 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Janssen, B.J., Florack, L.M.J., Duits, R., ter Haar Romeny, B.M. (2006). Optic Flow from Multi-scale Dynamic Anchor Point Attributes. In: Campilho, A., Kamel, M.S. (eds) Image Analysis and Recognition. ICIAR 2006. Lecture Notes in Computer Science, vol 4141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11867586_70

Download citation

  • DOI: https://doi.org/10.1007/11867586_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44891-4

  • Online ISBN: 978-3-540-44893-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics