Skip to main content

Dynamic Complexity of Chaotic Transitions in High-Dimensional Classical Dynamics: Leu-Enkephalin Folding

  • Conference paper
Computational Life Sciences II (CompLife 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4216))

Included in the following conference series:

  • 613 Accesses

Abstract

Leu-Enkephalin in explicit water is simulated using classical molecular dynamics. A β-turn transition is investigated by calculating the topological complexity (in the “computational mechanics” framework [J. P. Crutchfield and K. Young, Phys. Rev. Lett., 63, 105 (1989)]) of the dynamics of both the peptide and the neighbouring water molecules. The complexity of the atomic trajectories of the (relatively short) simulations used in this study reflect the degree of phase space mixing in the system. It is demonstrated that the dynamic complexity of the hydrogen atoms of the peptide and almost all of the hydrogens of the neighbouring waters exhibit a minimum precisely at the moment of the β-turn transition. This indicates the appearance of simplified periodic patterns in the atomic motion, which could correspond to high-dimensional tori in the phase space. It is hypothesized that this behaviour is the manifestation of the effect described in the approach to molecular transitions by Komatsuzaki and Berry [T. Komatsuzaki and R.S. Berry, Adv. Chem. Phys., 123, 79 (2002)], where a “quasi-regular” dynamics at the transition is suggested. Therefore, for the first time, the less chaotic character of the folding transition in a realistic molecular system is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Socci, N.D., Onuchic, J.N., Wolynes, P.G.: Protein folding mechanisms and the multidimensional folding funnel. Proteins 32(2), 136 (1998)

    Article  Google Scholar 

  2. Krivov, S.V., Karplus, M.: Hidden complexity of free energy surfaces for peptide (protein) folding. Proc. Nat. Acad. Sci. 101(41), 14766 (2004)

    Article  Google Scholar 

  3. Nerukh, D., Karvounis, G., Glen, R.C.: Complexity of classical dynamics of molecular systems. Part I: methodology. J. Chem. Phys., 117(21), 9611 (2002); Complexity of classical dynamics of molecular systems. Part II: finite statistical complexity of a water-Na+ system, ibid, 9618 (2002)

    Google Scholar 

  4. Nerukh, D., Karvounis, G., Glen, R.C.: Quantifying the complexity of chaos in multi-basin multidimensional dynamics of molecular systems. Complexity 10(2) (2004)

    Google Scholar 

  5. Crutchfield, J.P., Young, K.: Inferring statistical complexity. Phys. Rev. Lett. 63, 105 (1989)

    Article  MathSciNet  Google Scholar 

  6. Crutchfield, J.P., Young, K.: Computation at the Onset of Chaos. In: Zurek, W. (ed.) Entropy, Complexity, and Physics of Information, SFI Studies in the Sciences of Complexity, VIII. Addison-Wesley, Reading (1990)

    Google Scholar 

  7. Crutchfield, J.P.: The Calculi of Emergence: Computation, Dynamics, and Induction. Physica D 75, 11 (1994)

    Article  MATH  Google Scholar 

  8. Shalizi, C.R.: Causal Architecture, Complexity and Self-Organization in Time Series and Cellular Automata, PhD thesis, University of Wisconsin at Madison (2001)

    Google Scholar 

  9. Beck, D., Alonso, D., Daggett, V.: A microscopic view of peptide and protein salvation. Biophys. Chem. 100, 221 (2003)

    Article  Google Scholar 

  10. Sorenson, J.M., Hura, G., Soper, A.K., Petsemlidis, A., Head-Gordon, T.: Determining the Role of Hydration Forces in Protein Folding. J. Phys. Chem. B 103(26), 5413 (1999)

    Article  Google Scholar 

  11. Garcia, A.E., Hummer, G.: Water penetration and escape in proteins. PROTEINS: Struct., Funct. and Genet. 38, 261–272 (2000)

    Article  Google Scholar 

  12. Dennis, S., Camacho, C.J., Vajda, S.: Continuum electrostatic analysis of preferred solvation sites around proteins in solution. PROTEINS: Struct., Funct. and Genet. 38, 176 (2000)

    Article  Google Scholar 

  13. Baldwin, R.L.: Relation between peptide backbone solvation and the energetics of peptide hydrogen bonds. Biophys. Chem. 203, 101–102 (2002)

    Google Scholar 

  14. Bhattacharyya, S.M., Wang, Z., Zewail, A.H.: Dynamics of Water near a Protein Surface. J. Phys. Chem. B 107(107), 13218 (2003)

    Article  Google Scholar 

  15. Fenimore, P.W., Frauenfelder, H., McMahon, B.H., Young, R.D.: Bulk-solvent and hydration-shell fluctuations, similar to - and -fluctuations in glasses, control protein motions and functions. Proc. Nat. Acad. Sci. 101(40), 14408 (2004)

    Article  Google Scholar 

  16. Karvounis, G., Nerukh, D., Glen, R.C.: Water network dynamics at the critical moment of a peptide’s beta-turn formation: an MD study. J. Chem. Phys. 121(10), 4925 (2004)

    Article  Google Scholar 

  17. Komatsuzaki, T., Berry, R.S.: Chemical Reaction Dynamics: Many-Body Chaos and Regularity. Adv. Chem. Phys. 123, 79 (2002)

    Article  Google Scholar 

  18. Sybyl [molecular modeling package], version 6.8. St Louis (MO): Tripos Associates (2000)

    Google Scholar 

  19. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Hermans, J.: Interaction Model for Water in Relation to Protein Hydration. In: Pullman, B. (ed.) Intermolecular Forces, pp. 331–342. D. Reidel Publishing Company, Dordrecht (1981)

    Google Scholar 

  20. Scott, W.R.P., Hunenberger, P.H., Tironi, I.G., Mark, A.E., Billeter, S.R., Fennen, J., Torda, A.E., Huber, T., Kruger, P., van Gunsteren, W.F.: The GROMOS Biomolecular Simulation Program Package. J. Phys. Chem. A 103, 3596–3607 (1999)

    Google Scholar 

  21. van Gunsteren, W.F., Berendsen, H.J.C.: Computer simulation of molecular dynamics. Angew. Chem. Int. Ed. Engl. 29, 992 (1990)

    Article  Google Scholar 

  22. Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.C.: Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327 (1977)

    Article  Google Scholar 

  23. Miyamoto, S., Kollman, P.A.: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comp. Chem. 13, 952 (1992)

    Article  Google Scholar 

  24. Hutchinson, E.G., Thornton, J.M.: PROMOTIF–A program to identify and analyze structural motifs in proteins. Prot. Sci. 5, 212 (1996)

    Article  Google Scholar 

  25. van der Spoel, D., Berendsen, H.J.C.: Molecular dynamics simulations of Leu-enkephalin in water and DMSO. Biophys. J. 72, 2032 (1997)

    Article  Google Scholar 

  26. Braxenthaler, M., Unger, R., Auerbach, D., Given, J.A., Moult, J.: Chaos in protein dynamics. Proteins: structure, function, and genetics 29, 417 (1997)

    Article  Google Scholar 

  27. Zhou, H.-b.: Chaos in Biomolecular Dynamics. J. Phys. Chem. 100, 8101 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nerukh, D., Karvounis, G., Glen, R.C. (2006). Dynamic Complexity of Chaotic Transitions in High-Dimensional Classical Dynamics: Leu-Enkephalin Folding. In: R. Berthold, M., Glen, R.C., Fischer, I. (eds) Computational Life Sciences II. CompLife 2006. Lecture Notes in Computer Science(), vol 4216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875741_13

Download citation

  • DOI: https://doi.org/10.1007/11875741_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45767-1

  • Online ISBN: 978-3-540-45768-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics