Skip to main content

Invertible Polygonalization of 3D Planar Digital Curves and Application to Volume Data Reconstruction

  • Conference paper
Advances in Visual Computing (ISVC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4292))

Included in the following conference series:

Abstract

In this paper, we describe a new algorithm to compute in linear time a 3D planar polygonal curve from a planar digital curve, that is a curve which belongs to a digital plane. Based on this algorithm, we propose a new method for converting the boundary of digital volumetric objects into polygonal meshes which aims at providing a topologically consistent and invertible reconstruction, i.e. the digitization of the obtained object is equal to the original digital data. Indeed, we do not want any information to be added or lost. In order to limit the number of generated polygonal faces, our approach is based on the use of digital geometry tools which allow the reconstruction of large pieces of planes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. In: SIGGRAPH, Computer Graphics (ACM), Anaheim, USA, vol. 21, pp. 163–169 (1987)

    Google Scholar 

  2. Lewiner, T., Lopes, H., Vieira, A.W., Tavares, G.: Efficient implementation of marching cubes’ cases with topological guarantees. JGT 8, 1–15 (2003)

    Google Scholar 

  3. Nielson, G.M.: Dual marching cubes. In: IEEE Visualization, pp. 489–496. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  4. Montani, C., Scateni, R., Scopigno, R.: Discretized marching cubes. In: Proceedings of the Conference on Visualization, Los Alamitos, CA, USA, pp. 281–287 (1994)

    Google Scholar 

  5. Lachaud, J.O., Montanvert, A.: Continuous analogs of digital boundaries: A topological approach to iso-surfaces. Graph. Mod. and Im. Proc. 62, 129–164 (2000)

    Google Scholar 

  6. Françon, J., Papier, L.: Polyhedrization of the boundary of a voxel object. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 425–434. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  7. Klette, R., Sun, H.J.: Digital planar segment based polyhedrization for surface area estimation. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 356–366. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Sivignon, I., Dupont, F., Chassery, J.-M.: Reversible polygonalization of a 3D planar discrete curve: Application on discrete surfaces. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 347–358. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Andres, E.: Discrete linear objects in dimension n: the Standard model. Graphical Models 65, 92–111 (2003)

    Article  MATH  Google Scholar 

  10. Buzer, L.: A linear incremental algorithm for Naive and Standard digital lines and planes recognition. Graphical models 65, 61–76 (2003)

    Article  MATH  Google Scholar 

  11. Gerard, Y., Debled-Rennesson, I., Zimmermann, P.: An elementary digital plane recognition algorithm. Discrete Applied Mathematics 151, 169–183 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Vittone, J., Chassery, J.-M.: Recognition of digital naive planes and polyhedrization. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 296–307. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  13. Dexet, M., Andrès, É.: A generalized preimage for the standard and supercover digital hyperplane recognition. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 639–650. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Cœurjolly, D., Zerarga, L.: Supercover model, digital straight line recognition and curve reconstruction on the irregular isothetic grids. Computer and Graphics 30, 46–53 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dexet, M., Cœurjolly, D., Andres, E. (2006). Invertible Polygonalization of 3D Planar Digital Curves and Application to Volume Data Reconstruction. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2006. Lecture Notes in Computer Science, vol 4292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11919629_52

Download citation

  • DOI: https://doi.org/10.1007/11919629_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48626-8

  • Online ISBN: 978-3-540-48627-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics