Skip to main content

Dynamic Threshold and Cheater Resistance for Shamir Secret Sharing Scheme

  • Conference paper
Information Security and Cryptology (Inscrypt 2006)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 4318))

Included in the following conference series:

Abstract

In this paper, we investigate the problem of increasing the threshold parameter of the Shamir (t,n)-threshold scheme without interacting with the dealer. Our construction will reduce the problem of secret recovery to the polynomial reconstruction problem which can be solved using a recent algorithm by Guruswami and Sudan.

In addition to be dealer-free, our protocol does not increase the communication cost between the dealer and the n participants when compared to the original (t,n)-threshold scheme. Despite an increase of the asymptotic time complexity at the combiner, we show that recovering the secret from the output of the previous polynomial reconstruction algorithm is still realistic even for large values of t. Furthermore the scheme does not require every share to be authenticated before being processed by the combiner. This will enable us to reduce the number of elements to be publicly known to recover the secret to one digest produced by a collision resistant hash function which is smaller than the requirements of most verifiable secret sharing schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS 1979, pp. 313–317 (1979)

    Google Scholar 

  2. Bleichenbacher, D., Nguyen, P.Q.: Noisy polynomial interpolation and noisy chinese remaindering. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 53–69. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Blundo, C., Cresti, A., De Santis, A., Vaccaro, U.: Fully dynamic secret sharing schemes. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 110–125. Springer, Heidelberg (1994)

    Google Scholar 

  4. Dai, W.: Crypto++ 5.2.1 benchmarks (July 2004)

    Google Scholar 

  5. Desmedt, Y.: Society and group oriented cryptography: A new concept. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 120–127. Springer, Heidelberg (1988)

    Google Scholar 

  6. Desmedt, Y., Jajodia, S.: Redistributing secret shares to new access structures and its application. Technical Report ISSE TR-97-01, George Mason university (1997)

    Google Scholar 

  7. Desmedt, Y., King, B.: Verifiable democracy a protocol to secure an electronic legislature. In: Traunmüller, R., Lenk, K. (eds.) EGOV 2002. LNCS, vol. 2456, pp. 460–463. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Desmedt, Y., Kurosawa, K., Van Le, T.: Error correcting and complexity aspects of linear secret sharing schemes. In: Boyd, C., Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp. 396–407. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Frankel, Y., Gemmel, P., MacKenzie, P.D., Yung, M.: Optimal-resilience proactive public-key cryptosystems. In: FOCS 1997, pp. 384–393. IEEE Press, Los Alamitos (1997)

    Google Scholar 

  10. Galil, Z., Haber, S., Yung, M.: Cryptographic computation: Secure fault-tolerant protocols and the public-key model (extended abstract). In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 135–155. Springer, Heidelberg (1988)

    Google Scholar 

  11. Ghodosi, H., Pieprzyk, J.: Democratic systems. In: Varadharajan, V., Mu, Y. (eds.) ACISP 2001. LNCS, vol. 2119, pp. 392–402. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Guruswami, V.: List Decoding of Error-Correcting Codes. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  13. Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraic-geometric codes. IEEE Trans. on Information Theory 45(6), 1757–1767 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Harn, L.: Group-oriented (t, n)-threshold digital signature scheme and digital multisignature. IEE Proceedings - Computers and Digital Techniques 141(5), 307–313 (1994)

    Article  MATH  Google Scholar 

  15. Juels, A., Sudan, M.: A fuzzy vault scheme. In: ISIT 2002, p. 408. IEEE Press (July 2002); Extended version avaliable at: http://www.rsasecurity.com/rsalabs/staff/bios/ajuels/publications/fuzzy-vault/fuzzy_vault.pdf

  16. Karlof, C., Sastry, N., Li, Y., Perrig, A., Tygar, J.D.: Distillation codes and applications to DoS resistant multicast authentication. In: NDSS 2004 (February 2004)

    Google Scholar 

  17. Karnin, E.D., Greene, J.W., Hellman, M.E.: On secret sharing systems. IEEE Transactions on Information Theory 29(1), 35–41 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  18. Li, Q., Wang, Z., Niu, X., Sun, S.: A non-interactive modular verifiable secret sharing scheme. In: International Conference on Communications, Circuits and Systems, pp. 84–87. IEEE Press, Los Alamitos (2005)

    Google Scholar 

  19. Lysyanskaya, A., Tamassia, R., Triandopoulos, N.: Multicast authentication in fully adversarial networks. In: IEEE Symp. on Security and Privacy (November 2003)

    Google Scholar 

  20. Maeda, A., Miyaji, A., Tada, M.: Efficient and unconditionally secure verifiable threshold changeable scheme. In: Varadharajan, V., Mu, Y. (eds.) ACISP 2001. LNCS, vol. 2119, pp. 402–416. Springer, Heidelberg (2001)

    Google Scholar 

  21. Martin, K.: Untrustworthy participants in secret sharing schemes. In: Cryptography and Coding III, pp. 255–264. Oxford University Press, Oxford (1993)

    Google Scholar 

  22. Martin, K., Pieprzyk, J., Safavi-Naini, R., Wang, H.: Changing thresholds in the absence of secure channels. Australian Computer Journal 31, 34–43 (1999)

    MATH  Google Scholar 

  23. Martin, K., Safavi-Naini, R., Wang, H.: Bounds and techniques for efficient redistribution of secret shares to new access structures. The Computer Journal 42(8), 638–649 (1999)

    Article  MATH  Google Scholar 

  24. McEliece, R.J., Sarwate, D.V.: On sharing secrets and Reed-Solomon codes. Communications of the ACM 24(9), 583–584 (1981)

    Article  MathSciNet  Google Scholar 

  25. Parvaresh, F., Vardy, A.: Correcting errors beyond the Guruswami-Sudan radius in polynomial time. In: 46th Annual IEEE Symposium on Foundations of Computer Science, Pittsburgh, USA, pp. 285–294. IEEE Computer Society, Los Alamitos (2005)

    Chapter  Google Scholar 

  26. Pieprzyk, J., Hardjono, T., Seberry, J.: Fundamentals of Computer Security. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  27. Pieprzyk, J., Zhang, X.M.: Cheating prevention in secret sharing over GF(p t). In: Pandu Rangan, C., Ding, C. (eds.) INDOCRYPT 2001. LNCS, vol. 2247, pp. 79–90. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  28. Pieprzyk, J., Zhang, X.M.: Constructions of cheating immune secret sharing. In: Kim, K.-c. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 226–243. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  29. Pieprzyk, J., Zhang, X.M.: On cheating immune secret sharing. Discrete Mathematics and Theoretical Computer Science 6, 253–264 (2004)

    MATH  MathSciNet  Google Scholar 

  30. Schnorr, C.P.: A hierarchy of polynomial lattice basis reduction algorithms. Theoretical Computer Science 53, 201–224 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  31. Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms and solving subset sum problem. Math. Programming 66(1-3), 181–199 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schoenmakers, B.: A simple publicly verifiable secret sharing scheme and its application to electronic voting. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 148–164. Springer, Heidelberg (1999)

    Google Scholar 

  33. Shamir, A.: How to share a secret. Communication of the ACM 22(11), 612–613 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  34. Shoup, V.: Number Theory Library (NTL), Available online at: http://www.shoup.net/ntl/

  35. Steinfeld, R., Wang, H., Pieprzyk, J.: Lattice-based threshold-changeability for standard Shamir secret-sharing schemes. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 170–186. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  36. Stinson, D.R.: Cryptography: Theory and Practice. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  37. Stinson, D.R., Zhang, S.: Algorithms for detecting cheaters threshold schemes (January 2006), Available online at: http://www.cacr.math.uwaterloo.ca/~dstinson/papers/cheat.pdf

  38. Tang, C., Liu, Z., Wang, M.: A verifiable secret sharing scheme with statistical zero-knowledge (October 2003), Avaliable onlne at: http://eprint.iacr.org/2003/222.pdf

  39. Tartary, C., Wang, H.: Efficient multicast stream authentication for the fully adversarial network. In: Song, J.-S., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS, vol. 3786, pp. 108–125. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  40. Tompa, M., Woll, H.: How to share a secret with cheaters. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 261–265. Springer, Heidelberg (1987)

    Google Scholar 

  41. Zhang, X.M., Pieprzyk, J.: Cheating immune secret sharing. In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 144–149. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tartary, C., Wang, H. (2006). Dynamic Threshold and Cheater Resistance for Shamir Secret Sharing Scheme. In: Lipmaa, H., Yung, M., Lin, D. (eds) Information Security and Cryptology. Inscrypt 2006. Lecture Notes in Computer Science, vol 4318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11937807_9

Download citation

  • DOI: https://doi.org/10.1007/11937807_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49608-3

  • Online ISBN: 978-3-540-49610-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics