Skip to main content

Approximate Distance Queries in Disk Graphs

  • Conference paper
Approximation and Online Algorithms (WAOA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4368))

Included in the following conference series:

Abstract

We present efficient algorithms for approximately answering distance queries in disk graphs. Let G be a disk graph with n vertices and m edges. For any fixed ε> 0, we show that G can be preprocessed in \(O(m\sqrt{n}\epsilon^{-1}+m\epsilon^{-2}\log S)\) time, constructing a data structure of size O(n 3/2 ε − 1+ − 2logS), such that any subsequent distance query can be answered approximately in \(O(\sqrt{n}\epsilon^{-1}+\epsilon^{-2}\log S)\) time. Here S is the ratio between the largest and smallest radius. The estimate produced is within an additive error which is only ε times the longest edge on some shortest path.

The algorithm uses an efficient subdivision of the plane to construct a sparse graph having many of the same distance properties as the input disk graph. Additionally, the sparse graph has a small separator decomposition, which is then used to answer distance queries. The algorithm extends naturally to the higher dimensional ball graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mead, C., Conway, L.: Introduction to VLSI System. Addison-Wesley, Reading (1980)

    Google Scholar 

  2. Krumke, S.O., Marathe, M.V., Ravi, S.S.: Models and approximation algorithms for channel assignment in radio networks. Wireless Networks 7(6), 575–584 (2001)

    Article  MATH  Google Scholar 

  3. Li, X.Y.: Algorithmic, geometric and graphs issues in wireless networks. Wireless Communications and Mobile Computing 3(2), 119–140 (2003)

    Article  Google Scholar 

  4. Li, X.Y., Wan, P.J., Frieder, O.: Coverage in wireless ad hoc sensor networks. IEEE Transactions on Computers 52(6), 753–763 (2003)

    Article  Google Scholar 

  5. Srinivas, A., Modiano, E.: Minimum energy disjoint path routing in wireless ad-hoc networks. In: MOBICOM 2003, pp. 122–133. ACM, New York (2003)

    Chapter  Google Scholar 

  6. Gao, J., Zhang, L.: Well-separated pair decomposition for the unit-disk graph metric and its applications. SIAM Journal on Computing 35(1), 151–169 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Thorup, M., Zwick, U.: Approximate distance oracles. Journal of ACM 52(1), 1–24 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Zwick, U.: Exact and approximate distances in graphs - A survey. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 33–48. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets with applications to K-nearest-neighbors and N-body potential fields. Journal of ACM 42(1), 67–90 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fürer, M., Kasiviswanathan, S.P.: Spanners for geometric intersection graphs (2006), Available at http://www.cse.psu.edu/~kasivisw/research.html

  11. Miller, G.L., Teng, S.H., Vavasis, S.A.: A unified geometric approach to graph separators. In: FOCS 2001, pp. 538–547. IEEE, Los Alamitos (1991)

    Google Scholar 

  12. Arikati, S.R., Chen, D.Z., Chew, L.P., Das, G., Smid, M.H.M., Zaroliagis, C.D.: Planar spanners and approximate shortest path queries among obstacles in the plane. In: Díaz, J. (ed.) ESA 1996. LNCS, vol. 1136, pp. 514–528. Springer, Heidelberg (1996)

    Google Scholar 

  13. Schieber, B., Vishkin, U.: On finding lowest common ancestors: Simplification and parallelization. SIAM Journal on Computing 17(6), 1253–1262 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Balakrishnan, H., Barrett, C.L., Kumar, V.S.A., Marathe, M.V., Thite, S.: The distance-2 matching problem and its relationship to the mac-layer capacity of ad hoc wireless networks. IEEE Journal on Selected Areas in Communications 22, 1069–1079 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fürer, M., Kasiviswanathan, S.P. (2007). Approximate Distance Queries in Disk Graphs. In: Erlebach, T., Kaklamanis, C. (eds) Approximation and Online Algorithms. WAOA 2006. Lecture Notes in Computer Science, vol 4368. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11970125_14

Download citation

  • DOI: https://doi.org/10.1007/11970125_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69513-4

  • Online ISBN: 978-3-540-69514-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics