Skip to main content

Exploiting Nuclear Spin Polarization to Investigate Free Radical Reactions via in situ NMR

  • Chapter
  • First Online:
In situ NMR Methods in Catalysis

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 276))

Abstract

In situ NMR spectroscopy can be applied to investigate chemical reactions during which free radicals occur as intermediates. In chemical systems of low molecular weight, nuclear spin polarization results from the spin selectivity of free radical reactions because a pair of radicals, like any other given set of particles, has to obey the exclusion principle. Therefore, this system reacts selectively in terms of the participating nuclear spins when forming a chemical single bond. As a consequence, strong transient absorption and emission lines occur in NMR spectra acquired during a reaction of free radicals. This extraordinary phenomenon has become known as chemically induced dynamic nuclear polarization (CIDNP). Ever since its experimental discovery and theoretical verification, CIDNP has been employed to study the mechanisms of free radical reactions in solution. As such it has proven to be a very valuable tool for the elucidation of the mechanism of these reactions and, more importantly, to discriminate reaction pathways that include the formation of transient radical species from those that exclusively follow a “diamagnetic” route, i.e., a pathway where no paramagnetic intermediates are formed whatsoever. More recently, the photo-CIDNP technique has also been employed extensively to probe the surface-accessibility of aromatic amino acid side-chains bound within a protein. As such, it can be used to study the dynamic features of a protein during folding, refolding, and also in the equilibrium or “steady state”, yielding both qualitative and quantitative information.

This review outlines the historical development of the CIDNP technique as well as its theoretical background. This is followed by a series of examples showing how CIDNP can be used to elucidate reaction pathways of chemical transformations comprising diamagnetic intermediates. Additionally, we present examples of how “biological” CIDNP experiments are usually performed and we show what kind of information can be extracted from these studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bargon J, Fischer H, Johnsen U (1967) Z Naturforschg A 20:1551

    Google Scholar 

  2. Bargon J, Fischer H (1967) Z Naturforschg A 20:1556

    Google Scholar 

  3. Ward HR, Lawler RG (1967) J Am Chem Soc 89:5518

    Article  CAS  Google Scholar 

  4. Kaptein R, Dijkstra K, Nicolay K (1978) Nature 274:293

    Article  CAS  Google Scholar 

  5. Hore PJ, Broadhurst RW (1993) Prog Nucl Magn Reson Spectrosc 25:345

    Article  CAS  Google Scholar 

  6. Mok KH, Hore PJ (2004) Methods 34:75

    Article  CAS  Google Scholar 

  7. Kuprov I, Hore PJ (2004) J Magn Reson 171:171

    Article  CAS  Google Scholar 

  8. Fessenden RW, Schuler RH (1963) J Chem Phys 39:2147

    Article  CAS  Google Scholar 

  9. Eichwald C, Walleczek J (1997) J Chem Phys 107:4943

    Article  CAS  Google Scholar 

  10. Ritz T, Adem S, Schulten K (2000) Biophys J 78:707

    Article  CAS  Google Scholar 

  11. Ritz T, Dommer DH, Phillips JB (2002) Neuron 34:503

    Article  CAS  Google Scholar 

  12. Ritz T, Thalau P, Phillips JB, Wiltschko R, Wiltschko W (2004) Nature 429:177

    Article  CAS  Google Scholar 

  13. Closs GL (1969) J Am Chem Soc 91:4552

    Article  CAS  Google Scholar 

  14. Closs GL, Trifunac AD (1969) J Am Chem Soc 91:4554

    Article  CAS  Google Scholar 

  15. Closs GL, Trifunac AD (1970) J Am Chem Soc 92:2183

    Article  CAS  Google Scholar 

  16. Closs GL, Trifunac AD (1970) J Am Chem Soc 92:2186

    Article  CAS  Google Scholar 

  17. Closs GL, Doubleday CE, Paulson DR (1970) J Am Chem Soc 92:2185

    Article  CAS  Google Scholar 

  18. Kaptein R, Oosterhoff CJ (1969) Chem Phys Lett 4:195

    Article  CAS  Google Scholar 

  19. Kaptein R, Oosterhoff CJ (1969) Chem Phys Lett 4:214

    Article  CAS  Google Scholar 

  20. Adrian FJ (1970) J Chem Phys 53:3374

    Article  CAS  Google Scholar 

  21. Adrian FJ (1971) J Chem Phys 54:3912

    Article  CAS  Google Scholar 

  22. Noyes RM (1954) J Chem Phys 22:1349

    Article  CAS  Google Scholar 

  23. Closs GL, Czeropski MS (1977) J Am Chem Soc 99:6127

    Article  CAS  Google Scholar 

  24. Bargon J (1977) J Am Chem Soc 99:8350

    Article  CAS  Google Scholar 

  25. Kaptein R (1971) Chem Comm, p 732

    Google Scholar 

  26. Kaptein R (1972) J Am Chem Soc 94:6251

    Article  CAS  Google Scholar 

  27. Bargon J (2006) Photochem Photobiol Sci 5:970

    Article  CAS  Google Scholar 

  28. Roth HD, Kaplan ML (1973) J Am Chem Soc 95:262

    Article  CAS  Google Scholar 

  29. Bargon J (1971) J Am Chem Soc 93:4630

    Article  CAS  Google Scholar 

  30. Sinclair J, Kivelson D (1968) J Am Chem Soc 90:5074

    Article  CAS  Google Scholar 

  31. McConnell HM (1956) J Chem Phys 24:764

    Article  CAS  Google Scholar 

  32. Maki AH, Geske DH (1961) J Am Chem Soc 83:1852

    Article  CAS  Google Scholar 

  33. Oldham PH, Williams GH (1970) Chem Comm, p 1260

    Google Scholar 

  34. Kaptein R, Freeman R, Hill HDW, Bargon J (1973) Chem Comm, p 953

    Google Scholar 

  35. Pople JA, Beveridge DL, Dobosh PA (1968) J Am Chem Soc 90:4201

    Article  CAS  Google Scholar 

  36. Freeman R, Hill HDW, Kaptein R (1972) J Magn Reson 7:82

    CAS  Google Scholar 

  37. Maurer HM, Gardini GP, Bargon J (1979) Chem Comm, p 272

    Google Scholar 

  38. Maurer HM, Bargon J (1979) J Am Chem Soc 101:6865

    Article  CAS  Google Scholar 

  39. Maurer HM, Bargon J (1980) Org Mag Res 13:430

    Article  CAS  Google Scholar 

  40. Mok KH, Nagashima T, Day IJ, Hore PJ, Dobson CM (2005) Proc Natl Acad Sci USA 102:8899

    Article  CAS  Google Scholar 

  41. Closs GL, Czeropski MS (1977) Chem Phys Lett 45:115

    Article  CAS  Google Scholar 

  42. Closs GL, Czeropski MS (1978) Chem Phys Lett 53:321

    Article  CAS  Google Scholar 

  43. Kaptein R, Dijkstra K, Mueller F, Van Schagen CG, Visser AJWG (1978) J Magn Reson 31:171

    CAS  Google Scholar 

  44. Roth HD (1973) Mol Photochem 5:91

    CAS  Google Scholar 

  45. Roth HD, Manion ML (1975) J Am Chem Soc 97:6886

    Article  CAS  Google Scholar 

  46. Kuprov I, Hore PJ (2004) J Magn Reson 168:1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Bargon .

Editor information

Joachim Bargon Lars T. Kuhn

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuhn, L.T., Bargon, J. (2007). Exploiting Nuclear Spin Polarization to Investigate Free Radical Reactions via in situ NMR. In: Bargon, J., Kuhn, L.T. (eds) In situ NMR Methods in Catalysis. Topics in Current Chemistry, vol 276. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2007_119

Download citation

Publish with us

Policies and ethics