Skip to main content

Olive Pomace, a Source for Valuable Arabinan-Rich Pectic Polysaccharides

  • Chapter
  • First Online:
Carbohydrates in Sustainable Development I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 294))

Abstract

Cell wall polysaccharides account for nearly one third of olive pomace dry matter produced by the environment friendly biphasic system. These polysaccharides are mainly cellulose, glucuronoxylans, and arabinan-rich pectic polysaccharides, in equivalent proportions. The structural features of pectic polysaccharides are unique concerning the arabinan moiety due to the occurrence of a β-(1→5)-terminally-linked arabinose residue. This odd feature tends to disappear with olive ripening and can be used as a diagnostic tool in the evaluation of the stage of ripening of this fruit, as well as a marker for the presence of olive pulp in matrices containing pectic polysaccharides samples. These pectic polysaccharides have the ability to form elastic gels with calcium. The critical gelling calcium and galacturonic acid concentrations are higher than that observed for commercial citrus low-methoxyl pectic material. Nevertheless, they present a syneresis occurring for much higher calcium concentration and, consequently, show a much larger zone in which homogeneous gels are formed. In addition, olive pomace pectic polysaccharides gels are more resistant to temperature than the low-methoxyl pectin/calcium gels. These properties show that olive pomace can be a potential source of gelling pectic material with useful properties for particular applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fernández-Díez MJ (1971) The olive. In: Hulmed AC (ed) The biochemistry of fruits and their products. Academic, London, pp 255–279

    Google Scholar 

  2. http://www.asemesa.es

  3. Mafra I, Coimbra MA (2004) Improving the texture of processed fruit: the case of olives. In: Kilcast D (ed) Texture in food vol 2: solid foods. CRC Woodhead Publishing Ltd, Cambridge, pp 410–431

    Chapter  Google Scholar 

  4. Vincken J-P, Schols HA, Oomen RJFJ et al (2003) If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant Physiol 132:1781–1789

    Article  CAS  Google Scholar 

  5. Coimbra MA, Waldron KW, Selvendran RR (1994) Carbohydr Res 252:245–262

    CAS  Google Scholar 

  6. Coimbra MA, Rigby NM, Selvendran RR, Waldron KW (1995) Carbohydr Polym 27:277–284

    Article  CAS  Google Scholar 

  7. Mafra I, Lanza B, Reis A et al (2001) Physiol Plant 111:439–447

    Article  CAS  Google Scholar 

  8. Huisman MMH, Schols HA, Voragen AGJ (1996) Carbohydr Polym 31:123–133

    Article  CAS  Google Scholar 

  9. Vierhuis E, Schols HA, Beldman G et al (2000) Carbohydr Polym 43:11–21

    Article  CAS  Google Scholar 

  10. Jiménez A, Rodríguez R, Fernández-Caro I et al (2001) J Agric Food Chem 49:409–415

    Article  Google Scholar 

  11. Mafra I, Barros AS, Nunes C et al (2006) J Sci Food Agric 86:988–998

    Article  CAS  Google Scholar 

  12. Jiménez A, Rodríguez R, Fernández-Caro I et al (2001) J Agric Food Chem 49:2008–2013

    Article  Google Scholar 

  13. Cardoso SM, Coimbra MA, Lopes da Silva JA (2003) Carbohydr Polym 52:125–133

    Article  CAS  Google Scholar 

  14. Di Giovacchino L, Solinas M, Miccoli M (1994) J Am Oil Chem Soc 71:1189–1194

    Article  Google Scholar 

  15. Alfano G, Belli C, Lustrato G et al (2008) Bioresour Technol 99:4694–4701

    Article  CAS  Google Scholar 

  16. Cardoso SM, Guyot S, Marnet N et al (2005) J Sci Food Agric 85:21–32

    Article  CAS  Google Scholar 

  17. Roig A, Cayuela ML, Sánchez-Monedero MA (2006) Waste Manag 26:960–969

    Article  CAS  Google Scholar 

  18. Konstantinou M, Kolokassidou K, Pashalidis I (2007) Adsorption 13:33–40

    Article  CAS  Google Scholar 

  19. Alburquerque JA, Gonzálvez J, Tortosa G et al (2009) Biodegradation 20:257–270

    Article  CAS  Google Scholar 

  20. Suárez M, Romero M-P, Ramo T et al (2009) J Agric Food Chem 57:1463–1472

    Article  Google Scholar 

  21. Borja R, Rincón B, Raposo F et al (2002) Process Biochem 38:733–742

    Article  CAS  Google Scholar 

  22. Martín García AI, Moumen A, Yáñez Ruiz DR et al (2003) Anim Feed Sci Technol 107:61–74

    Article  Google Scholar 

  23. Banat F, Al-Asheh S, Al-Ahmad R et al (2007) Bioresour Technol 98:3017–3025

    Article  CAS  Google Scholar 

  24. Servili M, Baldioli M, Selvaggini R et al (1999) J Am Oil Chem Soc 76:873–882

    Article  CAS  Google Scholar 

  25. Romero C, Brenes M, Garcia P et al (2002) J Agric Food Chem 50:3835–3839

    Article  CAS  Google Scholar 

  26. Obied HK, Allen MS, Bedgood DR et al (2005) J Agric Food Chem 53:823–837

    Article  CAS  Google Scholar 

  27. Cardoso SM, Guyot S, Marnet N et al (2006) J Sci Food Agric 86:1495–1502

    Article  CAS  Google Scholar 

  28. Artajo L-S, Romero MP, Suárez M et al (2007) Eur Food Res Technol 225:617–625

    Article  CAS  Google Scholar 

  29. Miró-Casas E, Covas MI, Farre M et al (2003) Clin Chem 49:945–951

    Article  Google Scholar 

  30. Visioli F, Caruso D, Grande S et al (2005) Eur J Nutr 44:121–127

    Article  CAS  Google Scholar 

  31. Fernández-Bolaños J, Rodríguez G, Rodríguez R et al (2006) Grasas Aceites 57:95–106

    Article  Google Scholar 

  32. Bondioli P, Mariani C, Lanzani A et al (1993) J Am Oil Chem Soc 70:763–766

    Article  CAS  Google Scholar 

  33. Ibanez E, Palacios J, Senorans FJ et al (2000) J Am Oil Chem Soc 77:187–190

    Article  CAS  Google Scholar 

  34. Fernandez-Bolaños J, Rodriguez G, Gomez E et al (2004) J Agric Food Chem 52:5849–5855

    Article  Google Scholar 

  35. Kuno N, Shinohara G (2002) Patent No WO02/012159 (14.02.2002)

    Google Scholar 

  36. Derriche R, Berrahmoune KS (2007) J Food Eng 78:1149–1154

    Article  CAS  Google Scholar 

  37. Cardoso SM, Silva AM, Coimbra MA (2002) Carbohydr Res 337:917–924

    Article  CAS  Google Scholar 

  38. Cardoso SM, Ferreira JA, Mafra I et al (2007) J Agric Food Chem 55:7124–7130

    Article  CAS  Google Scholar 

  39. Cardoso SM, Coimbra MA, Lopes da Silva JA (2003) Food Hydrocoll 17:801–807

    Article  CAS  Google Scholar 

  40. Allain C, Salomé L (1990) Macromolecules 23:981–987

    Article  CAS  Google Scholar 

  41. Lopes da Silva JA, Gonçalves MP (1994) Carbohydr Polym 24:235–245

    Article  CAS  Google Scholar 

  42. Lopes da Silva JA, Rao MA, Fu J-T (1998) Rheology of structure development and loss during gelation and melting. In: Rao MA, Hartel RW (eds) Phase/state transitions in foods. Marcel Dekker, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel A. Coimbra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Coimbra, M.A., Cardoso, S.M., Lopes-da-Silva, J.A. (2010). Olive Pomace, a Source for Valuable Arabinan-Rich Pectic Polysaccharides. In: Rauter, A., Vogel, P., Queneau, Y. (eds) Carbohydrates in Sustainable Development I. Topics in Current Chemistry, vol 294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2010_60

Download citation

Publish with us

Policies and ethics