Skip to main content

Micromixing Within Microfluidic Devices

  • Chapter
  • First Online:
Microfluidics

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 304))

Abstract

Micromixing is a crucial process within microfluidic systems such as micro total analysis systems (μTAS). A state-of-art review on microstructured mixing devices and their mixing phenomena is given. The review first presents an overview of the characteristics of fluidic behavior at the microscale and their implications in microfluidic mixing processes. According to the two basic principles exploited to induce mixing at the microscale, micromixers are generally classified as being passive or active. Passive mixers solely rely on pumping energy, whereas active mixers rely on an external energy source to achieve mixing. Typical types of passive micromixers are discussed, including T- or Y-shaped, parallel lamination, sequential, focusing enhanced mixers, and droplet micromixers. Examples of active mixers using external forces such as pressure field, electrokinetic, dielectrophoretic, electrowetting, magneto-hydrodynamic, and ultrasound to assist mixing are presented. Finally, the advantages and disadvantages of mixing in a microfluidic environment are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Cross-sectional area (m2)

Ca :

Capillary number

D :

Diffusion coefficient (m2 s−1)

D h :

Hydraulic diameter (m)

f :

Frequency of the disturbance action

h :

Height of the channels (m)

j :

Diffusion flux (mol m−2 s−1)

k :

Boltzmann’s constant (k = 1.381·10−23J K−1)

n :

Number of parallel fluid substreams

Pe :

Peclét number

P wet :

Wetted perimeter (m)

Q 1 :

Volumetric flow rates for the lateral channels (m3 s−1)

Q 2 :

Volumetric flow rates of the central inlet channel (m3 s−1)

Q 3 :

Volumetric flow rates for the lateral channels (m3 s−1)

Q f :

Volumetric flow rates of the focused stream (m3 s−1)

R :

Radius of the particles (or molecules) (m)

Re :

Reynolds number

St :

Strouhal number

t :

Time (s)

T :

Absolute temperature

u :

Velocity of fluid (m s−1)

v 2 :

Average flow velocity of the flow within central inlet channel (m s−1)

v f :

Average flow velocity of the flow within focused stream (m s−1)

v o :

Average flow velocities of the flow within the mixing channel (m s−1)

w 2 :

Width of central inlet channel (m)

w f :

Width of the focused stream (m)

w o :

Width of the mixing channel (m)

x :

Position of the species (m)

γ :

Interfacial tension (N m−1)

ϕ :

Species concentration (Kg m−3)

ρ :

Fluid density (kg m−3)

μ :

Fluid dynamic viscosity (Pa s)

ν :

Fluid kinematic viscosity (m2 s−1)

μTAS:

Micro total analysis systems

ASM:

Asymmetric serpentine micromixer

CDM:

Circulation–disturbance micromixer

CGM:

Connected-groove micromixer

CMM:

Crossing manifold micromixer

EKI:

Elecrokinetic instability

EWDO:

Electrowetting on dielectrics

LOC:

Lab on a chip

MHD:

Magneto hydrodynamic

PCR:

Polymerase chain reaction

PSM:

Planar serpentine micromixer

SAR:

Split-and-recombine micromixers, sequential lamination micromixers

SGM:

Slanted-groove micromixer

SHM:

Staggered-herringbone micromixers

SOC:

Staggered overlapping crisscross micromixer

References

  1. Ståhl M, Åslund B, Rasmuson Å (2001) Reaction crystallization kinetics of benzoic acid. AIChE J 47(7):1544–1560

    Google Scholar 

  2. Schwarzer H, Schwertfirm F, Manhart M, Schmid H, Peukert W (2006) Predictive simulation of nanoparticle precipitation based on the population balance equation. Chem Eng Sci 61(1):167–181

    CAS  Google Scholar 

  3. Mae K, Maki T, Hasegawa I, Eto U, Mizutani Y, Honda N (2004) Development of a new micromixer based on split/recombination for mass production and its application to soap free emulsifier. Chem Eng J 101(1–3):31–38

    CAS  Google Scholar 

  4. Okubo Y, Toma M, Ueda H, Maki T, Mae K (2004) Microchannel devices for the coalescence of dispersed droplets produced for use in rapid extraction processes. Chem Eng J 101(1–3):39–48

    CAS  Google Scholar 

  5. Sprogies T, Köhler J, Gross G (2008) Evaluation of static micromixers for flow-through extraction by emulsification. Chem Eng J 135:S199–S202

    CAS  Google Scholar 

  6. Iwasaki T, Yoshida J (2005) Free radical polymerization in microreactors. Significant improvement in molecular weight distribution control. Macromolecules 38(4):1159–1163

    CAS  Google Scholar 

  7. Nagaki A, Kawamura K, Suga S, Ando T, Sawamoto M, Yoshida J (2004) Cation pool-initiated controlled/living polymerization using microsystems. J Am Chem Soc 126(45):14702–14703

    CAS  Google Scholar 

  8. Nagaki A, Tomida Y, Yoshida J (2008) Microflow-system-controlled anionic polymerization of styrenes. Macromolecules 41(17):6322–6330

    CAS  Google Scholar 

  9. Wilms D, Klos J, Frey H (2008) Microstructured reactors for polymer synthesis: a renaissance of continuous flow processes for tailor-made macromolecules? Macromol Chem Phys 209(4):343–356

    CAS  Google Scholar 

  10. Haswell S, Middleton R, O’Sullivan B, Skelton V, Watts P, Styring P (2001) The application of micro reactors to synthetic chemistry. Chem Commun (5):391–398

    Google Scholar 

  11. Hessel V, Hofmann C, Löb P, Löhndorf J, Löwe H, Ziogas A (2005) Aqueous Kolbe- Schmitt synthesis using resorcinol in a microreactor laboratory rig under high-p, T conditions. Org Process Res Dev 9(4):479–489

    CAS  Google Scholar 

  12. Kee S, Gavriiliidis A (2007) Batch versus continuous mg-scale synthesis of chalcone epoxide with soluble polyethylene glycol poly-L-leucine catalyst. J Mol Catal A Chem 263(1–2):156–162

    CAS  Google Scholar 

  13. Miller E, Wheeler A (2008) A digital microfluidic approach to homogeneous enzyme assays. Anal Chem 80(5):1614–1619

    CAS  Google Scholar 

  14. Ukita Y, Asano T, Fujiwara K, Matsui K, Takeo M, Negoro S, Kanie T, Katayama M, Utsumi Y (2008) Application of vertical microreactor stack with polystylene microbeads to immunoassay. Sens Actuators A Phys 145:449–455

    Google Scholar 

  15. Bilsel O, Kayatekin C, Wallace L, Matthews C (2005) A microchannel solution mixer for studying microsecond protein folding reactions. Rev Sci Instrum 76:014302

    Google Scholar 

  16. Park T, Lee S, Seong G, Choo J, Lee E, Kim Y, Ji W, Hwang S, Gweon D (2005) Highly sensitive signal detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfluidic chip: confocal surface-enhanced Raman spectroscopic study. Lab Chip 5(4):437–442

    CAS  Google Scholar 

  17. Maerkl S (2009) Integration column: microfluidic high-throughput screening. Integr Biol 1(1):19–29

    CAS  Google Scholar 

  18. Chen X, Cui D, Liu C, Li H, Chen J (2007) Continuous flow microfluidic device for cell separation, cell lysis and DNA purification. Anal Chim Acta 584(2):237–243

    CAS  Google Scholar 

  19. Zhang C, Xing D, Li Y (2007) Micropumps, microvalves, and micromixers within PCR microfluidic chips: advances and trends. Biotechnol Adv 25(5):483–514

    CAS  Google Scholar 

  20. Sato K, Hibara A, Tokeshi M, Hisamoto H, Kitamori T (2003) Microchip-based chemical and biochemical analysis systems. Adv Drug Deliv Rev 55(3):379–391

    CAS  Google Scholar 

  21. Malic L, Herrmann M, Hoa X, Tabrizian M (2007) Current state of intellectual property in microfluidic nucleic acid analysis. Recent Pat Eng 1(1):71–88

    Google Scholar 

  22. Ingham C, Vlieg J (2008) MEMS and the microbe. Lab Chip 8(10):1604–1616

    CAS  Google Scholar 

  23. Micheletti M, Lye G (2006) Microscale bioprocess optimisation. Curr Opin Biotechnol 17(6):611–618

    CAS  Google Scholar 

  24. Schäpper D, Alam M, Szita N, Eliasson Lantz A, Gernaey K (2009) Application of microbioreactors in fermentation process development: a review. Anal Bioanal Chem 395(3):679–695

    Google Scholar 

  25. Schulte T, Bardell R, Weigl B (2002) Microfluidic technologies in clinical diagnostics. Clin Chim Acta 321(1–2):1–10

    CAS  Google Scholar 

  26. Rapp B, Gruhl F, Länge K. (2010) Biosensors with label-free detection designed for diagnostic applications. Anal Bioanal Chem 398:2403–2412

    Google Scholar 

  27. Zafar Razzacki S, Thwar P, Yang M, Ugaz V, Burns M (2004) Integrated microsystems for controlled drug delivery. Adv Drug Deliv Rev 56(2):185–198

    CAS  Google Scholar 

  28. Reyes D, Iossifidis D, Auroux P, Manz A (2002) Micro total analysis systems. 1. Introduction, theory, and technology. Anal Chem 74(12):2623–2636

    CAS  Google Scholar 

  29. Lee S, Lee S (2004) Micro total analysis system (μ-TAS) in biotechnology. Appl Microbiol Biotechnol 64(3):289–299

    Google Scholar 

  30. Dittrich P, Tachikawa K, Manz A (2006) Micro total analysis systems. Latest advancements and trends. Anal Chem 78(12):3887–3908

    CAS  Google Scholar 

  31. Zhang Y, Ozdemir P (2009) Microfluidic DNA amplification – a review. Anal Chim Acta 638(2):115–125

    CAS  Google Scholar 

  32. Doku G, Verboom W, Reinhoudt D, van den Berg A (2005) On-microchip multiphase chemistry – a review of microreactor design principles and reagent contacting modes. Tetrahedron 61(11):2733–2742

    CAS  Google Scholar 

  33. Naher S, Orpen D, Brabazon D, Morshed M (2010) An overview of microfluidic mixing application. Adv Mat Res 83:931–939

    Google Scholar 

  34. Dittrich P, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov 5(3):210–218

    CAS  Google Scholar 

  35. Yoshida J, Nagaki A, Iwasaki T, Suga S (2005) Enhancement of chemical selectivity by microreactors. Chem Eng Technol 28(3):259–266

    CAS  Google Scholar 

  36. Baldyga J, Pohorecki R (1995) Turbulent micromixing in chemical reactors – a review. Chem Eng J Biochem Eng J 58(2):183–195

    CAS  Google Scholar 

  37. Beebe DJ, Mensing GA, Walker GM (2002) Physics and application of microfluidic in biology. Annu Rev Biomed Eng 4:261–286

    CAS  Google Scholar 

  38. Weigl B, Bardell R, Cabrera C (2003) Lab-on-a-chip for drug development. Adv Drug Deliv Rev 55(3):349–377

    CAS  Google Scholar 

  39. Nguyen N, Wereley S (2002) Fundamentals and applications of microfluidics. Artech House, Norwood

    Google Scholar 

  40. Einstein A, Fürth R (1956) Investigations on the theory of the Brownian movement. Dover Publications, New York

    Google Scholar 

  41. Zhang Z, Zhao P, Xiao G, Lin M, Cao X (2008) Focusing-enhanced mixing in microfluidic channels. Biomicrofluidics 2:014101

    Google Scholar 

  42. Yaralioglu G, Wygant I, Marentis T, Khuri-Yakub B (2004) Ultrasonic mixing in microfluidic channels using integrated transducers. Anal Chem 76(13):3694–3698

    CAS  Google Scholar 

  43. Glasgow I, Aubry N (2003) Enhancement of microfluidic mixing using time pulsing. Lab Chip 3(2):114–120. http://dx.doi.org/10.1039/B302569A

    Google Scholar 

  44. Yang Z, Matsumoto S, Goto H, Matsumoto M, Maeda R (2001) Ultrasonic micromixer for microfluidic systems. Sens Actuators A Phys 93(3):266–272

    Google Scholar 

  45. Tsai H Jr, Lin L (2002) Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump* 1. Sens Actuators A Phys 97:665–671

    Google Scholar 

  46. Bau H, Zhong J, Yi M (2001) A minute magneto hydro dynamic (MHD) mixer. Sens Actuators B Chem 79(2–3):207–215

    Google Scholar 

  47. Wu Z, Nguyen N (2005) Convective–diffusive transport in parallel lamination micromixers. Microfluid Nanofluid 1(3):208–217

    Google Scholar 

  48. Nguyen N, Wu Z (2005) Micromixers – a review. J Micromech Microeng 15:R1

    Google Scholar 

  49. Kamholz A, Yager P (2002) Molecular diffusive scaling laws in pressure-driven microfluidic channels: deviation from one-dimensional Einstein approximations. Sens Actuators B Chem 82(1):117–121

    Google Scholar 

  50. Schwesinger N, Frank T, Wurmus H (1996) A modular microfluid system with an integrated micromixer. J Micromech Microeng 6:99

    CAS  Google Scholar 

  51. Knight J, Vishwanath A, Brody J, Austin R (1998) Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys Rev Lett 80(17):3863–3866

    CAS  Google Scholar 

  52. Günther A, Jhunjhunwala M, Thalmann M, Schmidt M, Jensen K (2005) Micromixing of miscible liquids in segmented gas- liquid flow. Langmuir 21(4):1547–1555

    Google Scholar 

  53. Song H, Tice J, Ismagilov R (2003) A microfluidic system for controlling reaction networks in time. Angew Chem 115(7):792–796

    Google Scholar 

  54. Johnson T, Ross D, Locascio L (2002) Rapid microfluidic mixing. Anal Chem 74(1):45–51

    CAS  Google Scholar 

  55. Stroock A, Dertinger S, Ajdari A, Mezic I, Stone H, Whitesides G (2002) Chaotic mixer for microchannels. Science 295(5555):647

    CAS  Google Scholar 

  56. Hessel V, Löwe H, Schönfeld F (2005) Micromixers – a review on passive and active mixing principles. Chem Eng Sci 60(8–9):2479–2501

    CAS  Google Scholar 

  57. Jeong G, Chung S, Kim C, Lee S (2010) Applications of micromixing technology. Analyst 135(3):460–473

    CAS  Google Scholar 

  58. Kamholz A, Weigl B, Finlayson B, Yager P (1999) Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. Anal Chem 71(23):5340–5347

    CAS  Google Scholar 

  59. Gobby D, Angeli P, Gavriilidis A (2001) Mixing characteristics of T-type microfluidic mixers. J Micromech Microeng 11:126

    Google Scholar 

  60. Ismagilov R, Stroock A, Kenis P, Whitesides G, Stone H (2000) Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. Appl Phys Lett 76:2376

    CAS  Google Scholar 

  61. Soleymani A, Kolehmainen E, Turunen I (2008) Numerical and experimental investigations of liquid mixing in T-type micromixers. Chem Eng J 135:S219–S228

    CAS  Google Scholar 

  62. Wong S, Bryant P, Ward M, Wharton C (2003) Investigation of mixing in a cross-shaped micromixer with static mixing elements for reaction kinetics studies. Sens Actuators B Chem 95(1–3):414–424

    Google Scholar 

  63. Wong S, Ward M, Wharton C (2004) Micro T-mixer as a rapid mixing micromixer. Sens Actuators B Chem 100(3):359–379

    Google Scholar 

  64. Hoffmann M, Raebiger N, Schlueter M, Blazy S, Bothe D, Stemich C, Warnecke A (2003) Experimental and numerical investigations of T-shaped micromixers. In: Proceedings of the 11th European conference on mixing, Bamberg, Germany, 14–17 October 2003, pp 269–276

    Google Scholar 

  65. Veenstra T, Lammerink T, Elwenspoek M, Berg A (1999) Characterization method for a new diffusion mixer applicable in micro flow injection analysis systems. J Micromech Microeng 9:199

    CAS  Google Scholar 

  66. Erbacher C, Bessoth F, Busch M, Verpoorte E, Manz A (1999) Towards integrated continuous-flow chemical reactors. Microchim Acta 131(1):19–24

    CAS  Google Scholar 

  67. Lob P, Drese K, Hessel V, Hardt S, Hofmann C, Lowe H, Schenk R, Schonfeld F, Werner B (2004) Steering of liquid mixing speed in interdigital micro mixers-from very fast to deliberately slow mixing. Chem Eng Technol 27(3):340–345

    Google Scholar 

  68. Cha J, Kim J, Ryu S, Park J, Jeong Y, Park S, Kim H, Chun K (2006) A highly efficient 3D micromixer using soft PDMS bonding. J Micromech Microeng 16:1778. http://dx.doi.org/10.1088/0960-1317/16/9/004

    Google Scholar 

  69. Che-Hsin L, Chien-Hsiung T, Lung-Ming F (2005) A rapid three-dimensional vortex micromixer utilizing self-rotation effect under low Reynolds number conditions. J Micromech Microeng 15:935. http://dx.doi.org/10.1088/0960-1317/15/5/006

    Google Scholar 

  70. Bessoth F, deMello A, Manz A (1999) Microstructure for efficient continuous flow mixing. Anal Commun 36(6):213–215

    CAS  Google Scholar 

  71. Floyd T, Schmidt M, Jensen K (2005) Silicon micromixers with infrared detection for studies of liquid-phase reactions. Ind Eng Chem Res 44(8):2351–2358

    CAS  Google Scholar 

  72. Jackman R, Floyd T, Ghodssi R, Schmidt M, Jensen K (2001) Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy. J Micromech Microeng 11:263

    CAS  Google Scholar 

  73. Drese K (2004) Optimization of interdigital micromixers via analytical modeling – exemplified with the SuperFocus mixer. Chem Eng J 101(1–3):403–407

    CAS  Google Scholar 

  74. Ehlers S, Elgeti K, Menzel T, Wießmeier G (2000) Mixing in the offstream of a microchannel system* 1. Chem Eng Process 39(4):291–298

    CAS  Google Scholar 

  75. Hardt S, Schönfeld F (2003) Laminar mixing in different interdigital micromixers: II. Numerical simulations. AIChE J 49(3):578–584

    CAS  Google Scholar 

  76. Hessel V, Hardt S, Löwe H, Schönfeld F (2003) Laminar mixing in different interdigital micromixers: I. Experimental characterization. AIChE J 49(3):566–577

    CAS  Google Scholar 

  77. Ehrfeld W, Golbig K, Hessel V, Lowe H, Richter T (1999) Characterization of mixing in micromixers by a test reaction: single mixing units and mixer arrays. Ind Eng Chem Res 38(3):1075–1082

    CAS  Google Scholar 

  78. Rosenfeld C, Serra C, Brochon C, Hadziioannou G (2007) High-temperature nitroxide-mediated radical polymerization in a continuous microtube reactor: towards a better control of the polymerization reaction. Chem Eng Sci 62(18–20):5245–5250

    CAS  Google Scholar 

  79. Rosenfeld C, Serra C, Brochon C, Hessel V, Hadziioannou G (2008) Use of micromixers to control the molecular weight distribution in continuous two-stage nitroxide-mediated copolymerizations. Chem Eng J 135:S242–S246

    CAS  Google Scholar 

  80. Chung Y, Hsu Y, Jen C, Lu M, Lin Y (2004) Design of passive mixers utilizing microfluidic self-circulation in the mixing chamber. Lab Chip 4(1):70–77

    CAS  Google Scholar 

  81. Lin C, Tsai C, Fu L (2005) A rapid three-dimensional vortex micromixer utilizing self-rotation effects under low Reynolds number conditions. J Micromech Microeng 15:935

    Google Scholar 

  82. Ehrfeld W, Hessel V, Haverkamp V (2000) Microreactors. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim. doi: 10.1002/14356007.b16_b37

    Google Scholar 

  83. Jähnisch K, Hessel V, Löwe H, Baerns M (2004) Chemistry in microstructured reactors. Angew Chem Int Ed 43(4):406–446

    Google Scholar 

  84. Lee S, Kim D, Lee S, Kwon T (2006) A split and recombination micromixer fabricated in a PDMS three-dimensional structure. J Micromech Microeng 16:1067. http://dx.doi.org/10.1088/0960-1317/16/5/027

    Google Scholar 

  85. Fang W, Yang J (2009) A novel microreactor with 3D rotating flow to boost fluid reaction and mixing of viscous fluids. Sens Actuators B Chem 140(2):629–642

    Google Scholar 

  86. Branebjerg J, Gravesen P, Krog J, Nielsen C (2002) Fast mixing by lamination. In: Proceedings IEEE 9th annual international workshop on micro electro mechanical systems (MEMS'96), San Diego, CA, 11–15 Febuary 2002, pp 441–446

    Google Scholar 

  87. Hardt S, Pennemann H, Schönfeld F (2006) Theoretical and experimental characterization of a low-Reynolds number split-and-recombine mixer. Microfluid Nanofluid 2(3):237–248

    CAS  Google Scholar 

  88. Munson M, Yager P (2004) Simple quantitative optical method for monitoring the extent of mixing applied to a novel microfluidic mixer. Anal Chim Acta 507(1):63–71

    CAS  Google Scholar 

  89. Radadia A, Cao L, Jeong H, Shannon M, Masel R (2008) A 3D micromixer fabricated with dry film resist. In: Proceedings IEEE 20th international conference on micro mechanical systems (MEMS'07), Hyogo, Japan, 21–25 January 2007, pp 361–364

    Google Scholar 

  90. Schönfeld F, Hessel V, Hofmann C (2004) An optimised split-and-recombine micro-mixer with uniform ‘chaotic’mixing. Lab Chip 4(1):65–69

    Google Scholar 

  91. Bertsch A, Heimgartner S, Cousseau P, Renaud P (2001) Static micromixers based on large-scale industrial mixer geometry. Lab Chip 1(1):56–60. http://dx.doi.org/10.1039/DOI/B103848F.

    Google Scholar 

  92. Lim T, Son Y, Jeong Y, Yang D, Kong H, Lee K, Kim D (2010) Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length. Lab Chip 11(1):100–103. http://dx.doi.org/10.1039/DOI/C005325M

    Google Scholar 

  93. Melin J, Giménez G, Roxhed N, Wijngaart W, Stemme G (2004) A fast passive and planar liquid sample micromixer. Lab Chip 4(3):214–219

    CAS  Google Scholar 

  94. He B, Burke B, Zhang X, Zhang R, Regnier F (2001) A picoliter-volume mixer for microfluidic analytical systems. Anal Chem 73(9):1942–1947

    CAS  Google Scholar 

  95. Sudarsan A, Ugaz V (2006) Multivortex micromixing. Proc Natl Acad Sci USA 103:7228–7233

    CAS  Google Scholar 

  96. Vestad T, Marr D, Oakey J (2004) Flow control for capillary-pumped microfluidic systems. J Micromech Microeng 14:1503

    Google Scholar 

  97. Stiles T, Fallon R, Vestad T, Oakey J, Marr D, Squier J, Jimenez R (2005) Hydrodynamic focusing for vacuum-pumped microfluidics. Microfluid Nanofluid 1(3):280–283

    CAS  Google Scholar 

  98. Lee G, Chang C, Huang S, Yang R (2006) The hydrodynamic focusing effect inside rectangular microchannels. J Micromech Microeng 16:1024

    Google Scholar 

  99. Lee G, Hung C, Ke B, Huang G, Hwei B, Lai H (2001) Hydrodynamic focusing for a micromachined flow cytometer. Trans ASME J Fluid Eng 123(3):672–679

    Google Scholar 

  100. Wu Z, Nguyen N (2005) Hydrodynamic focusing in microchannels under consideration of diffusive dispersion: theories and experiments. Sens Actuators B Chem 107(2):965–974

    Google Scholar 

  101. Wu Z, Nguyen N (2005) Rapid mixing using two-phase hydraulic focusing in microchannels. Biomed Microdevices 7(1):13–20

    Google Scholar 

  102. Park H, Qiu X, Rhoades E, Korlach J, Kwok L, Zipfel W, Webb W, Pollack L (2006) Achieving uniform mixing in a microfluidic device: hydrodynamic focusing prior to mixing. Anal Chem 78(13):4465–4473

    CAS  Google Scholar 

  103. Nguyen N, Huang X (2005) Mixing in microchannels based on hydrodynamic focusing and time-interleaved segmentation: modelling and experiment. Lab Chip 5(11):1320–1326

    CAS  Google Scholar 

  104. Chang C, Huang Z, Yang R (2007) Three-dimensional hydrodynamic focusing in two-layer polydimethylsiloxane (PDMS) microchannels. J Micromech Microeng 17:1479

    CAS  Google Scholar 

  105. Simonnet C, Groisman A (2005) Two-dimensional hydrodynamic focusing in a simple microfluidic device. Appl Phys Lett 87:114104

    Google Scholar 

  106. Sundararajan N, Pio M, Lee L, Berlin A (2004) Three-dimensional hydrodynamic focusing in polydimethylsiloxane (PDMS) microchannels. J Microelectromech Syst 13(4):559–567

    Google Scholar 

  107. Yang R, Feeback D, Wang W (2005) Microfabrication and test of a three-dimensional polymer hydro-focusing unit for flow cytometry applications. Sens Actuators A Phys 118(2):259–267

    Google Scholar 

  108. Mao X, Lin S, Dong C, Huang T (2009) Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing. Lab Chip 9(11):1583–1589

    CAS  Google Scholar 

  109. Mao X, Waldeisen J, Huang T (2007) “Microfluidic drifting” – implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device. Lab Chip 7(10):1260–1262. http://dx.doi.org/10.1039/B711155J

    Google Scholar 

  110. Ottino J (1989) The kinematics of mixing: stretching, chaos, and transport. Cambridge University Press, Cambridge

    Google Scholar 

  111. Mengeaud V, Josserand J, Girault H (2002) Mixing processes in a zigzag microchannel: finite element simulations and optical study. Anal Chem 74(16):4279–4286

    CAS  Google Scholar 

  112. Jiang F, Drese K, Hardt S, Küpper M, Schönfeld F (2004) Helical flows and chaotic mixing in curved micro channels. AIChE J 50(9):2297–2305

    CAS  Google Scholar 

  113. Schönfeld F, Hardt S (2004) Simulation of helical flows in microchannels. AIChE J 50(4):771–778

    Google Scholar 

  114. Chen H, Meiners J (2004) Topologic mixing on a microfluidic chip. Appl Phys Lett 84:2193

    CAS  Google Scholar 

  115. Liu R, Stremler M, Sharp K, Olsen M, Santiago J, Adrian R, Aref H, Beebe D (2000) Passive mixing in a three-dimensional serpentine microchannel. J Microelectromech Syst 9(2):190–197

    Google Scholar 

  116. Vijayendran R, Motsegood K, Beebe D, Leckband D (2003) Evaluation of a three-dimensional micromixer in a surface-based biosensor†. Langmuir 19(5):1824–1828

    CAS  Google Scholar 

  117. Lin Y, Gerfen G, Rousseau D, Yeh S (2003) Ultrafast microfluidic mixer and freeze-quenching device. Anal Chem 75(20):5381–5386

    CAS  Google Scholar 

  118. Stroock A, Dertinger S, Whitesides G, Ajdari A (2002) Patterning flows using grooved surfaces. Anal Chem 74(20):5306–5312

    CAS  Google Scholar 

  119. Hassell D, Zimmerman W (2006) Investigation of the convective motion through a staggered herringbone micromixer at low Reynolds number flow. Chem Eng Sci 61(9):2977–2985

    CAS  Google Scholar 

  120. Wang H, Iovenitti P, Harvey E, Masood S (2002) Optimizing layout of obstacles for enhanced mixing in microchannels. Smart Mater Struct 11:662

    CAS  Google Scholar 

  121. Bhagat A, Papautsky I (2008) Enhancing particle dispersion in a passive planar micromixer using rectangular obstacles. J Micromech Microeng 18:085005. http://dx.doi.org/10.1088/0960-1317/18/8/085005

    Google Scholar 

  122. Bhagat A, Peterson E, Papautsky I (2007) A passive planar micromixer with obstructions for mixing at low Reynolds numbers. J Micromech Microeng 17:1017

    Google Scholar 

  123. Yang J, Fang W, Tung K (2008) Fluids mixing in devices with connected-groove channels. Chem Eng Sci 63(7):1871–1881

    CAS  Google Scholar 

  124. Yang J, Huang K, Tung K, Hu I (2007) A chaotic micromixer modulated by constructive vortex agitation. J Micromech Microeng 17:2084. http://dx.doi.org/10.1088/0960-1317/17/10/021

  125. Howell P, Mott D, Fertig S, Kaplan C, Golden J, Oran E, Ligler F (2005) A microfluidic mixer with grooves placed on the top and bottom of the channel. Lab Chip 5(5):524–530

    CAS  Google Scholar 

  126. Hong C, Choi J, Ahn C (2004) A novel in-plane passive microfluidic mixer with modified Tesla structures. Lab Chip 4(2):109–113

    CAS  Google Scholar 

  127. Sudarsan A, Ugaz V (2006) Fluid mixing in planar spiral microchannels. Lab Chip 6(1):74–82

    CAS  Google Scholar 

  128. Park S, Kim J, Park J, Chung S, Chung C, Chang J (2004) Rapid three-dimensional passive rotation micromixer using the breakup process. J Micromech Microeng 14:6

    Google Scholar 

  129. Long M, Sprague M, Grimes A, Rich B, Khine M (2009) A simple three-dimensional vortex micromixer. Appl Phys Lett 94:133501

    Google Scholar 

  130. Park J, Kim D, Kang T, Kwon T (2008) Improved serpentine laminating micromixer with enhanced local advection. Microfluid Nanofluid 4(6):513–523

    CAS  Google Scholar 

  131. Kim D, Lee S, Kwon T, Ahn C (2005) A serpentine laminating micromixer combining splitting/recombination and advection. Lab Chip 5(7):739–747. http://dx.doi.org/10.1039/B418314B

    Google Scholar 

  132. Wang L, Yang J (2006) An overlapping crisscross micromixer using chaotic mixing principles. J Micromech Microeng 16:2684. http://dx.doi.org/10.1088/0960-1317/16/12/022

    Google Scholar 

  133. Wang L, Yang J, Lyu P (2007) An overlapping crisscross micromixer. Chem Eng Sci 62(3):711–720

    CAS  Google Scholar 

  134. Kim S, Song Y, Skipper P, Han J (2006) Electrohydrodynamic generation and delivery of monodisperse picoliter droplets using a poly (dimethylsiloxane) microchip. Anal Chem 78(23):8011–8019

    CAS  Google Scholar 

  135. Lorenz R, Edgar J, Jeffries G, Chiu D (2006) Microfluidic and optical systems for the on-demand generation and manipulation of single femtoliter-volume aqueous droplets. Anal Chem 78(18):6433–6439

    CAS  Google Scholar 

  136. Quevedo E, Steinbacher J, McQuade D (2005) Interfacial polymerization within a simplified microfluidic device: capturing capsules. J Am Chem Soc 127(30):10498–10499

    CAS  Google Scholar 

  137. Handique K, Burns M (2001) Mathematical modeling of drop mixing in a slit-type microchannel. J Micromech Microeng 11:548

    CAS  Google Scholar 

  138. Nisisako T, Torii T, Takahashi T, Takizawa Y (2006) Synthesis of monodisperse bicolored janus particles with electrical anisotropy using a microfluidic Co flow system. Adv Mater 18(9):1152–1156

    CAS  Google Scholar 

  139. Song H, Bringer M, Tice J, Gerdts C, Ismagilov R (2009) Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels. Appl Phys Lett 83(22):4664–4666

    Google Scholar 

  140. Song H, Ismagilov R (2003) Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J Am Chem Soc 125(47):14613–14619

    CAS  Google Scholar 

  141. Günther A, Jensen K (2006) Multiphase microfluidics: from flow characteristics to chemical and materials synthesis. Lab Chip 6(12):1487–1503

    Google Scholar 

  142. Shui L, Eijkel J, van den Berg A (2007) Multiphase flow in micro-and nanochannels. Sens Actuators B Chem 121(1):263–276

    Google Scholar 

  143. Sugiura S, Nakajima M, Seki M (2002) Effect of channel structure on microchannel emulsification. Langmuir 18(15):5708–5712

    CAS  Google Scholar 

  144. Okushima S, Nisisako T, Torii T, Higuchi T (2004) Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir 20(23):9905–9908

    CAS  Google Scholar 

  145. Shui L, Eijkel J, van den Berg A (2007) Multiphase flow in microfluidic systems-control and applications of droplets and interfaces. Adv Colloid Interface Sci 133(1):35–49

    CAS  Google Scholar 

  146. Thorsen T, Roberts R, Arnold F, Quake S (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86(18):4163–4166

    CAS  Google Scholar 

  147. Yobas L, Martens S, Ong W, Ranganathan N (2006) High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab Chip 6(8):1073–1079. http://dx.doi.org/10.1039/B602240E

    Google Scholar 

  148. Garstecki P, Fuerstman M, Stone H, Whitesides G (2006) Formation of droplets and bubbles in a microfluidic T-junction – scaling and mechanism of break-up. Lab Chip 6(3):437–446

    CAS  Google Scholar 

  149. Teh S, Lin R, Hung L, Lee A (2008) Droplet microfluidics. Lab Chip 8(2):198–220

    CAS  Google Scholar 

  150. Garstecki P, Fuerstman M, Whitesides G (2005) Nonlinear dynamics of a flow-focusing bubble generator: an inverted dripping faucet. Phys Rev Lett 94(23):234502

    Google Scholar 

  151. Bringer M, Gerdts C, Song H, Tice J, Ismagilov R (1818) Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets. Philos Trans R Soc Lond A Math Phys Eng Sci 362:1087

    Google Scholar 

  152. Tice J, Lyon A, Ismagilov R (2004) Effects of viscosity on droplet formation and mixing in microfluidic channels. Anal Chim Acta 507(1):73–77

    CAS  Google Scholar 

  153. Pohar A, Plazl I, Žnidarši-Plazl P (2009) Lipase-catalyzed synthesis of isoamyl acetate in an ionic liquid/n-heptane two-phase system at the microreactor scale. Lab Chip 9(23):3385–3390

    CAS  Google Scholar 

  154. Liau A, Karnik R, Majumdar A, Cate J (2005) Mixing crowded biological solutions in milliseconds. Anal Chem 77(23):7618–7625

    CAS  Google Scholar 

  155. Tung K, Li C, Yang J (2009) Mixing and hydrodynamic analysis of a droplet in a planar serpentine micromixer. Microfluid Nanofluid 7(4):545–557

    CAS  Google Scholar 

  156. Deshmukh A, Liepmann D, Pisano A (2000) Characterization of a micro-mixing, pumping, and valving system. In: Proceedings 11th international conference on solid-state sensor and actuators (Transducers’01), Munich, Germany, 10–14 June 2001, pp 950–953

    Google Scholar 

  157. Deshmukh A, Liepmann D, Pisano A (2001) Continuous micromixer with pulsatile micropumps. In: Proceedings IEEE solid-state sensor and actuator workshop, Hilton Head Island, SC, 4–8 June 2000, pp 73–76

    Google Scholar 

  158. Fujii T, Sando Y, Higashino K, Fujii Y (2003) A plug and play microfluidic device. Lab Chip 3(3):193–197

    CAS  Google Scholar 

  159. Lim C, Lam Y, Yang C (2010) Mixing enhancement in microfluidic channel with a constriction under periodic electro-osmotic flow. Biomicrofluidics 4:014101

    Google Scholar 

  160. Lei K, Li W (2008) A novel in-plane microfluidic mixer using vortex pumps for fluidic discretization. J Assoc Lab Automation 13(4):227–236

    Google Scholar 

  161. Oddy M, Santiago J, Mikkelsen J (2001) Electrokinetic instability micromixing. Anal Chem 73(24):5822–5832

    CAS  Google Scholar 

  162. Yang R, Wu C, Tseng T, Huang S, Lee G (2005) Enhancement of electrokinetically-driven flow mixing in microchannel with added side channels. Jpn J Appl Phys 1 44(10):7634

    CAS  Google Scholar 

  163. Posner J, Santiago J (2006) Convective instability of electrokinetic flows in a cross-shaped microchannel. J Fluid Mech 555:1–42

    Google Scholar 

  164. Qian S, Bau H (2002) A chaotic electroosmotic stirrer. Anal Chem 74(15):3616–3625

    CAS  Google Scholar 

  165. Glasgow I, Batton J, Aubry N (2004) Electroosmotic mixing in microchannels. Lab Chip 4(6):558–562

    CAS  Google Scholar 

  166. Tang Z, Hong S, Djukic D, Modi V, West A, Yardley J, Osgood R (2002) Electrokinetic flow control for composition modulation in a microchannel. J Micromech Microeng 12:870

    CAS  Google Scholar 

  167. Yan DG, Yang C, Miao JM, Lam YC, Huang XY (2009) Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects. Electrophoresis 30(18):3144–3152

    CAS  Google Scholar 

  168. Lee H, Voldman J (2007) Optimizing micromixer design for enhancing dielectrophoretic microconcentrator performance. Anal Chem 79(5):1833–1839

    CAS  Google Scholar 

  169. Deval J, Tabeling P, Ho C (2002) A dielectrophoretic chaotic mixer. In: Proceedings 15th international conference on micro electro mechanical systems, Las Vegas, NV, 20–24 January 2002, pp 36–39

    Google Scholar 

  170. Goet G, Baier T, Hardt S (2009) Micro contactor based on isotachophoretic sample transport. Lab Chip 9(24):3586–3593. doi:10.1039/b914466h

    CAS  Google Scholar 

  171. Paik P, Pamula V, Pollack M, Fair R (2003) Electrowetting-based droplet mixers for microfluidic systems. Lab Chip 3(1):28–33

    CAS  Google Scholar 

  172. Paik P, Pamula V, Fair R (2003) Rapid droplet mixers for digital microfluidic systems. Lab Chip 3(4):253–259

    CAS  Google Scholar 

  173. Fowler J, Moon H, Kim C (2002) Enhancement of mixing by droplet-based microfluidics. In: Proceedings IEEE 15th international conference on micro electro mechanical systems, Las Vegas, NV, 20–24 January 2002, pp 97–100

    Google Scholar 

  174. West J, Karamata B, Lillis B, Gleeson J, Alderman J, Collins J, Lane W, Mathewson A, Berney H (2002) Application of magnetohydrodynamic actuation to continuous flow chemistry. Lab Chip 2(4):224–230

    CAS  Google Scholar 

  175. Oh D, Jin J, Choi J, Kim H, Lee J (2007) A microfluidic chaotic mixer using ferrofluid. J Micromech Microeng 17:2077

    Google Scholar 

  176. Yang Z, Goto H, Matsumoto M, Maeda R (2000) Active micromixer for microfluidic systems using lead-zirconate-titanate (PZT)-generated ultrasonic vibration. Electrophoresis 21(1):116–119

    CAS  Google Scholar 

  177. Woias P, Hauser K, Yacoub-George E (2000) An active silicon micromixer for mTAS applications. In: van den Berg A, Olthuis W, Bergveld P (eds) Proceedings micro total analysis systems symposium (μTAS2000), Enschede, The Netherlands, 14–18 May 2000, pp 277–282

    Google Scholar 

  178. Liu R, Yang J, Pindera M, Athavale M, Grodzinski P (2002) Bubble-induced acoustic micromixing. Lab Chip 2(3):151–157

    CAS  Google Scholar 

  179. Liu R, Lenigk R, Druyor-Sanchez R, Yang J, Grodzinski P (2003) Hybridization enhancement using cavitation microstreaming. Anal Chem 75(8):1911–1917

    CAS  Google Scholar 

  180. Jang L, Chao S, Holl M, Meldrum D (2007) Resonant mode-hopping micromixing. Sens Actuators A Phys 138(1):179–186

    Google Scholar 

  181. Ahmed D, Mao X, Shi J, Juluri B, Huang T (2009) A millisecond micromixer via single-bubble-based acoustic streaming. Lab Chip 9(18):2738–2741. http://dx.doi.org/10.1039/B903687C

    Google Scholar 

  182. Kim S, Wang F, Burns M, Kurabayashi K (2009) Temperature-programmed natural convection for micromixing and biochemical reaction in a single microfluidic chamber. Anal Chem 81(11):4510–4516

    CAS  Google Scholar 

  183. Lu L, Ryu K, Liu C (2002) A magnetic microstirrer and array for microfluidic mixing. J Microelectromech Syst 11(5):462–469

    CAS  Google Scholar 

  184. Mensing G, Pearce T, Graham M, Beebe D (1818) An externally driven magnetic microstirrer. Philos Trans R Soc Lond A Math Phys Eng Sci 362:1059

    Google Scholar 

  185. Huh Y, Park T, Lee E, Hong W, Lee S (2008) Development of a fully integrated microfluidic system for sensing infectious viral disease. Electrophoresis 29(14):2960–2969

    CAS  Google Scholar 

  186. Haeberle S, Brenner T, Schlosser H, Zengerle R, Ducrée J (2005) Centrifugal micromixery. Chem Eng Technol 28(5):613–616

    CAS  Google Scholar 

  187. Chakraborty S, Balakotaiah V (2003) A novel approach for describing mixing effects in homogeneous reactors. Chem Eng Sci 58(3–6):1053–1061

    CAS  Google Scholar 

  188. Baldyga J, Bourne J, Hearn S (1997) Interaction between chemical reactions and mixing on various scales. Chem Eng Sci 52(4):457–466

    CAS  Google Scholar 

  189. Hessel V, Hardt S, Löwe H (2004) Chemical micro process engineering: fundamentals, modelling and reactions. Wiley-Vch, Weinheim

    Google Scholar 

  190. Karnik R, Gu F, Basto P, Cannizzaro C, Dean L, Kyei-Manu W, Langer R, Farokhzad O (2008) Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett 8(9):2906–2912

    CAS  Google Scholar 

  191. Shestopalov I, Tice J, Ismagilov R (2004) Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip 4(4):316–321

    CAS  Google Scholar 

  192. Chow A (2002) Lab on a chip: opportunities for chemical engineering. AIChE J 48(8):1590–1595

    CAS  Google Scholar 

  193. Jensen K (2001) Microreaction engineering – is small better? Chem Eng Sci 56(2):293–303

    CAS  Google Scholar 

  194. Mason B, Price K, Steinbacher J, Bogdan A, McQuade D (2007) Greener approaches to organic synthesis using microreactor technology. Chem Rev 107(6):2300–2318

    CAS  Google Scholar 

  195. Aoki N, Hasebe S, Mae K (2004) Mixing in microreactors: effectiveness of lamination segments as a form of feed on product distribution for multiple reactions. Chem Eng J 101(1–3):323–331

    CAS  Google Scholar 

  196. Chambers R, Fox M, Sandford G (2005) Elemental fluorinePart 18. Selective direct fluorination of 1, 3-ketoesters and 1, 3-diketones using gas/liquid microreactor technology. Lab Chip 5(10):1132–1139

    CAS  Google Scholar 

  197. Demello A (2006) Control and detection of chemical reactions in microfluidic systems. Nature 442(7101):394–402

    CAS  Google Scholar 

  198. Kestenbaum H, Lange de Oliveira A, Schmidt W, Schüth F, Ehrfeld W, Gebauer K, Löwe H, Richter T (2000) Synthesis of ethylene oxide in a catalytic microreactor system. Stud Surf Sci Catal 130:2741–2746

    Google Scholar 

  199. Surangalikar H, Ouyang X, Besser R (2003) Experimental study of hydrocarbon hydrogenation and dehydrogenation reactions in silicon microfabricated reactors of two different geometries. Chem Eng J 93(3):217–224

    CAS  Google Scholar 

  200. Huebner A, Sharma S, Srisa-Art M, Hollfelder F, Edel J, demello A (2008) Microdroplets: a sea of applications? Lab Chip 8(8):1244–1254

    CAS  Google Scholar 

  201. Li W, Young E, Seo M, Nie Z, Garstecki P, Simmons C, Kumacheva E (2008) Simultaneous generation of droplets with different dimensions in parallel integrated microfluidic droplet generators. Soft matter 4(2):258–262

    CAS  Google Scholar 

  202. Capretto L, Mazzitelli S, Balestra C, Tosi A, Nastruzzi C (2008) Effect of the gelation process on the production of alginate microbeads by microfluidic chip technology. Lab Chip 8(4):617–621

    CAS  Google Scholar 

  203. Nisisako T, Torii T (2008) Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab Chip 8(2):287–293

    CAS  Google Scholar 

  204. Fair R (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluid 3(3):245–281

    CAS  Google Scholar 

  205. Link D, Grasland Mongrain E, Duri A, Sarrazin F, Cheng Z, Cristobal G, Marquez M, Weitz D (2006) Electric control of droplets in microfluidic devices. Angew Chem 118(16):2618–2622

    Google Scholar 

  206. Krishnadasan S, Brown R, Demello A, Demello J (2007) Intelligent routes to the controlled synthesis of nanoparticles. Lab Chip 7(11):1434–1441

    CAS  Google Scholar 

  207. Voloshin Y, Halder R, Lawal A (2007) Kinetics of hydrogen peroxide synthesis by direct combination of H2 and O2 in a microreactor. Catal Today 125(1–2):40–47

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xunli Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Capretto, L., Cheng, W., Hill, M., Zhang, X. (2011). Micromixing Within Microfluidic Devices. In: Lin, B. (eds) Microfluidics. Topics in Current Chemistry, vol 304. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_150

Download citation

Publish with us

Policies and ethics