Skip to main content

Dynamic Nuclear Polarization Enhanced NMR in the Solid-State

  • Chapter
  • First Online:
Hyperpolarization Methods in NMR Spectroscopy

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 338))

Abstract

Nuclear magnetic resonance (NMR) spectroscopy is one of the most commonly used spectroscopic techniques to obtain information on the structure and dynamics of biological and chemical materials. A variety of samples can be studied including solutions, crystalline solids, powders and hydrated protein extracts. However, biological NMR spectroscopy is limited to concentrated samples, typically in the millimolar range, due to its intrinsic low sensitivity compared to other techniques such as fluorescence or electron paramagnetic resonance (EPR) spectroscopy.

Dynamic nuclear polarization (DNP) is a method that increases the sensitivity of NMR by several orders of magnitude. It exploits a polarization transfer from unpaired electrons to neighboring nuclei which leads to an absolute increase of the signal-to-noise ratio (S/N). Consequently, biological samples with much lower concentrations can now be studied in hours or days compared to several weeks.

This chapter will explain the different types of DNP enhanced NMR experiments, focusing primarily on solid-state magic angle spinning (MAS) DNP, its applications, and possible means of improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APG:

Alanyl-prolyl-glycine

B 0 :

External magnetic field

B 1 :

RF field strength

B 1e :

MW field strength

bCTbK:

bis-cyclohexyl-TEMPO-bisketal

BDPA:

1,3-Bisdiphenylene-2-phenyl allyl

BT2E:

bis-TEMPO-2-ethylene oxide

bTbk:

bis-TEMPO-bisketal

bTbtk-py:

bis-TEMPO-bis-thioketal-tetra-tetrahydropyran

BTOX:

bis-TEMPO tethered by oxalate

BTOXA:

bis-TEMPO tethered by oxalyl amide

BTUrea:

bis-TEMPO tethered by urea

BWOs:

Backward wave oscillators

c :

Concentration

CE:

Cross effect

CIDNP:

Chemically induced dynamic nuclear polarization

CP:

Cross polarization

DMSO:

Dimethyl sulfoxide

DNP:

Dynamic Nuclear Polarization

DOTAPO-TEMPO:

4-[N,N-Di-(2-hydroxy-3-(TEMPO-40-oxy)-propyl)]-amino-TEMPO

DQ:

Double quantum

EIKs:

Extended interaction klystrons

EIOs:

Extended interaction oscillators

EPR:

Electron paramagnetic resonance

FT:

Fourier transform

IMPATT:

Impact ionization avalanche transit-time

INEPT:

Insensitive nuclei enhanced by polarization transfer

K:

Kelvin

MAS:

Magic angle spinning

MRI:

Magnetic resonance imaging

MW:

Microwave

nAChR:

Nicotinic acetylcholine receptor

N e :

Number of electrons

N-f-MLF-OH:

N-Formyl-Met-Leu-Phe-OH

NMR:

Nuclear magnetic resonance

NT-II:

Neurotoxin II

OX063 (Trityl):

Tris{8-carboxyl-2,2,6,6-benzo(1,2-d:4,5-d)-bis(1,3)dithiole- 4-yl}methyl sodium salt

PE:

Paramagnetic effects

PHIP:

Para-hydrogen induced polarization

PRE:

Paramagnetic relaxation enhancement

Q-factor:

Quality factor

S/N:

Signal-to-noise ratio

SD:

Spin diffusion

SE:

Solid effect

SQ:

Single quantum

T:

Tesla

T 1DQ :

Double quantum relaxation time

T 1e :

Electron spin-lattice relaxation time

T 1n :

Nuclear spin-lattice relaxation time

T 1p :

Nuclear relaxation time in the rotating frame

T 1ZQ :

Zero quantum relaxation time

T 2e :

Electron spin–spin relaxation time

T 2n :

Nuclear spin–spin relaxation time

TEMPO:

2,2,6,6-Tetramethylpiperidinoxyl

TJ-DNP:

Temperature-jump dynamic nuclear polarization

TM:

Thermal mixing

TOTAPOL:

1-(TEMPO-4-oxyl)-3-(TEMPO-4-amino)-propan-2-ol

W:

Watt

ZQ:

Zero quantum

Δ :

Inhomogeneous breadth of the EPR spectrum

δ :

Homogeneous EPR linewidth

ε :

Enhancement

γ e :

Gyromagnetic ratio of electron

γ n :

Gyromagnetic ratio of nucleus

κ :

Sensitivity

τ B :

Polarization buildup time constant

τ R :

Rotor period

ω 0e :

Electron Larmor frequency

ω 0I :

Nuclear Larmor frequency

ω R :

Spinning frequency

References

  1. Griffin RG (1998) Dipolar recoupling in MAS spectra of biological solids. Nat Struct Biol 5:508–512

    CAS  Google Scholar 

  2. McDermott AE (2004) Structural and dynamic studies of proteins by solid-state NMR spectroscopy: rapid movement forward. Curr Opin Struct Biol 14:554–561

    CAS  Google Scholar 

  3. Jaroniec CP, MacPhee CE, Bajaj VS, McMahon MT, Dobson CM, Griffin RG (2004) High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. Proc Natl Acad Sci USA 101:711–716

    CAS  Google Scholar 

  4. Wasmer C, Lange A, Van MH, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218-289) prion form a beta solenoid with a triangular hydrophobic core. Science 319:1523–1526

    CAS  Google Scholar 

  5. Tycko R (2006) Characterization of amyloid structures at the molecular level by solid state nuclear magnetic resonance spectroscopy. Methods Enzymol 413:103–122

    CAS  Google Scholar 

  6. Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98–102

    CAS  Google Scholar 

  7. Nieuwkoop AJ, Wylie BJ, Franks WT, Shah GJ, Rienstra CM (2009) Atomic resolution protein structure determination by three-dimensional transferred echo double resonance solid-state nuclear magnetic resonance spectroscopy. J Chem Phys 131:095101

    Google Scholar 

  8. Renault M, Bos MP, Tommassen J, Baldus M (2011) Solid-state NMR on a large multidomain integral membrane protein: the outer membrane protein assembly factor BamA. J Am Chem Soc 133:4175–4177

    CAS  Google Scholar 

  9. Lange V, Becker-Baldus J, Kunert B, van Rossum BJ, Casagrande F, Engel A, Roske Y, Scheffel FM, Schneider E, Oschkinat H (2010) A MAS NMR study of the bacterial ABC transporter ArtMP. Chembiochem 11:547–555

    CAS  Google Scholar 

  10. Franks WT, Linden AH, Kunert B, van Rossum BJ, Oschkinat H (2012) Solid-state magic-angle spinning NMR of membrane proteins and protein–ligand interactions. Eur J Cell Biol 91:340–348

    CAS  Google Scholar 

  11. Shahid SA, Bardiaux B, Franks WT, Krabben L, Habeck M, van Rossum BJ, Linke D (2012) Membrane-protein structure determination by solid-state NMR spectroscopy of microcrystals. Nat Methods 9:1212–1217

    CAS  Google Scholar 

  12. Park SH, Das BB, Casagrande F, Tian Y, Nothnagel HJ, Chu MN, Kiefer H, Maier K, De Angelis AA, Marassi FM et al (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491:779–783

    CAS  Google Scholar 

  13. Griffin RG (2010) Spectroscopy clear signals from surfaces. Nature 468:381–382

    CAS  Google Scholar 

  14. Bargon J, Fischer H, Johnsen U (1967) Kernresonanz-Emissionslinien Wahrend Rascher Radikalreaktionen .I. Aufnahmeverfahren und Beispiele 27. Z Naturforsc Part A Astrophys Phys Physikalisc Chem A 22:1551–1555

    Google Scholar 

  15. Ward HR, Lawler RG (1967) Nuclear magnetic resonance emission and enhanced absorption in rapid organometallic reactions. J Am Chem Soc 89:5518–5519

    CAS  Google Scholar 

  16. Closs GL, Closs LE (1969) Induced dynamic nuclear spin polarization in reactions of photochemically and thermally generated triplet diphenylmethylene. J Am Chem Soc 91:4549–4550

    CAS  Google Scholar 

  17. Daviso E, Diller A, Alia A, Matysik J, Jeschke G (2008) Photo-CIDNP MAS NMR beyond the T(1) limit by fast cycles of polarization extinction and polarization generation. J Magn Reson 190:43–51

    CAS  Google Scholar 

  18. Daviso E, Janssen GJ, Alia A, Jeschke G, Matysik J, Tessari M (2011) A 10 000-fold nuclear hyperpolarization of a membrane protein in the liquid phase via solid-state mechanism. J Am Chem Soc 133:16754–16757

    CAS  Google Scholar 

  19. Matysik J, Diller A, Roy E, Alia A (2009) The solid-state photo-CIDNP effect. Photosynth Res 102:427–435

    CAS  Google Scholar 

  20. Bouchiat MA, Carver TR, Varnum CM (1960) Nuclear polarization in He-3 gas induced by optical pumping and dipolar exchange. Phys Rev Lett 5:373–375

    CAS  Google Scholar 

  21. Eisenschmid TC, Kirss RU, Deutsch PP, Hommeltoft SI, Eisenberg R, Bargon J, Lawler RG, Balch AL (1987) Para hydrogen induced polarization in hydrogenation reactions. J Am Chem Soc 109:8089–8091

    CAS  Google Scholar 

  22. Bowers CR, Weitekamp DP (1986) Transformation of symmetrization order to nuclear-spin magnetization by chemical-reaction and nuclear-magnetic-resonance. Phys Rev Lett 57:2645–2648

    CAS  Google Scholar 

  23. Lampel G (1968) Nuclear dynamic polarization by optical electronic saturation and optical pumping in semiconductors. Phys Rev Lett 20:491–493

    CAS  Google Scholar 

  24. Bifone A, Song YQ, Seydoux R, Taylor RE, Goodson BM, Pietrass T, Budinger TF, Navon G, Pines A (1996) NMR of laser-polarized xenon in human blood. Proc Natl Acad Sci USA 93:12932–12936

    CAS  Google Scholar 

  25. Pietrass T, Bifone A, Room T, Hahn EL (1996) Optically enhanced high-field NMR of GaAs. Phys Rev B Condens Matter 53:4428–4433

    CAS  Google Scholar 

  26. Overhauser AW (1953) Polarization of nuclei in metals. Phys Rev 92:411–415

    CAS  Google Scholar 

  27. Carver TR, Slichter CP (1953) Polarization of nuclear spins in metals. Phys Rev 92:212–213

    CAS  Google Scholar 

  28. Carver TR, Slichter CP (1956) Experimental verification of the overhauser nuclear polarization effect. Phys Rev 102:975–980

    CAS  Google Scholar 

  29. Bennett LH, Torrey HC (1957) High negative nuclear polarizations in a liquid. Phys Rev 108:499–500

    CAS  Google Scholar 

  30. Hausser KH, Stehlik D (1968) Solid DNP on metals. Adv Magn Reson 3:79

    CAS  Google Scholar 

  31. Song CS, Hu KN, Joo CG, Swager TM, Griffin RG (2006) TOTAPOL: a biradical polarizing agent for dynamic nuclear polarization experiments in aqueous media. J Am Chem Soc 128:11385–11390

    CAS  Google Scholar 

  32. Gunther UL (2013) Dynamic nuclear hyperpolarization in liquids. Top Curr Chem 335:23–69

    Google Scholar 

  33. Ardenkjaer-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, Servin R, Thaning M, Golman K (2003) Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc Natl Acad Sci USA 100:10158–10163

    CAS  Google Scholar 

  34. Joo CG, Hu KN, Bryant JA, Griffin RG (2006) In situ temperature jump high-frequency dynamic nuclear polarization experiments: enhanced sensitivity in liquid-state NMR spectroscopy. J Am Chem Soc 128:9428–9432

    CAS  Google Scholar 

  35. Wind RA, Duijvestijn MJ, Vanderlugt C, Manenschijn A, Vriend J (1985) Applications of dynamic nuclear-polarization in C-13 NMR in solids. Prog Nucl Magn Reson Spectrosc 17:33–67

    CAS  Google Scholar 

  36. Afeworki M, McKay RA, Schaefer J (1992) Selective observation of the interface of heterogeneous polycarbonate polystyrene blends by dynamic nuclear-polarization C-13 NMR-spectroscopy. Macromolecules 25:4084–4091

    CAS  Google Scholar 

  37. Afeworki M, Vega S, Schaefer J (1992) Direct electron-to-carbon polarization transfer in homogeneously doped polycarbonates. Macromolecules 25:4100–4105

    CAS  Google Scholar 

  38. Afeworki M, McKay RA, Schaefer J (1993) Dynamic nuclear-polarization enhanced nuclear-magnetic-resonance of polymer-blend interfaces. Mater Sci Eng A Struct Mater 162:221–228

    Google Scholar 

  39. Becerra LR, Gerfen GJ, Temkin RJ, Singel DJ, Griffin RG (1993) Dynamic nuclear-polarization with a cyclotron-resonance maser at 5-T. Phys Rev Lett 71:3561–3564

    CAS  Google Scholar 

  40. Hall DA, Maus DC, Gerfen GJ, Inati SJ, Becerra LR, Dahlquist FW, Griffin RG (1997) Polarization-enhanced NMR spectroscopy of biomolecules in frozen solution. Science 276:930–932

    CAS  Google Scholar 

  41. Rosay M, Tometich L, Pawsey S, Bader R, Schauwecker R, Blank M, Borchard PM, Cauffman SR, Felch KL, Weber RT et al (2010) Solid-state dynamic nuclear polarization at 263 GHz: spectrometer design and experimental results. Phys Chem Chem Phys 12:5850–5860

    CAS  Google Scholar 

  42. Maly T, Debelouchina GT, Bajaj VS, Hu KN, Joo CG, Mak-Jurkauskas ML, Sirigiri JR, van der Wel PCA, Herzfeld J, Temkin RJ et al (2008) Dynamic nuclear polarization at high magnetic fields. J Chem Phys 128:052211–052219

    Google Scholar 

  43. Rosay M, Lansing JC, Haddad KC, Bachovchin WW, Herzfeld J, Temkin RJ, Griffin RG (2003) High-frequency dynamic nuclear polarization in MAS spectra of membrane and soluble proteins. J Am Chem Soc 125:13626–13627

    CAS  Google Scholar 

  44. Mak-Jurkauskas ML, Bajaj VS, Hornstein MK, Belenky M, Griffin RG, Herzfeld J (2008) Energy transformations early in the bacteriorhodopsin photocycle revealed by DNP-enhanced solid-state NMR. Proc Natl Acad Sci USA 105:883–888

    CAS  Google Scholar 

  45. Bajaj VS, Mak-Jurkauskas ML, Belenky M, Herzfeld J, Griffin RG (2009) Functional and shunt states of bacteriorhodopsin resolved by 250 GHz dynamic nuclear polarization-enhanced solid-state NMR. Proc Natl Acad Sci USA 106:9244–9249

    CAS  Google Scholar 

  46. van der Wel PCA, Hu KN, Lewandowski J, Griffin RG (2006) Dynamic nuclear polarization of amyloidogenic peptide nanocrystals: GNNQQNY, a core segment of the yeast prion protein Sup35p. J Am Chem Soc 128:10840–10846

    Google Scholar 

  47. Rosay M, Weis V, Kreischer KE, Temkin RJ, Griffin RG (2002) Two-dimensional C-13-C-13 correlation spectroscopy with magic angle spinning and dynamic nuclear polarization. J Am Chem Soc 124:3214–3215

    CAS  Google Scholar 

  48. Debelouchina GT, Bayro MJ, van der Wel PCA, Caporini MA, Barnes AB, Rosay M, Maas WE, Griffin RG (2010) Dynamic nuclear polarization-enhanced solid-state NMR spectroscopy of GNNQQNY nanocrystals and amyloid fibrils. Phys Chem Chem Phys 12:5911–5919

    CAS  Google Scholar 

  49. Linden AH, Franks WT, Akbey U, Lange S, van Rossum BJ, Oschkinat H (2011) Cryogenic temperature effects and resolution upon slow cooling of protein preparations in solid state NMR. J Biomol NMR 51:283–292

    CAS  Google Scholar 

  50. Linden AH, Lange S, Franks WT, Akbey U, Specker E, van Rossum BJ, Oschkinat H (2011) Neurotoxin II bound to acetylcholine receptors in native membranes studied by dynamic nuclear polarization NMR. J Am Chem Soc 133:19266–19269

    CAS  Google Scholar 

  51. Lingwood MD, Han S (2011) Chapter 3 – solution-state dynamic nuclear polarization. In: Graham AW (ed) Annual reports on NMR spectroscopy, Elsevier Academic, 73:83–126

    Google Scholar 

  52. Mullerwarmuth W, Meisegresch K (1983) Molecular motions and interactions as studied by dynamic nuclear-polarization (DNP) in free-radical solutions. Adv Magn Reson 11:1–45

    Google Scholar 

  53. Griesinger C, Bennati M, Vieth HM, Luchinat C, Parigi G, Höfer P, Engelke F, Glaser SJ, Denysenkov V, Prisner TF (2012) Dynamic nuclear polarization at high magnetic fields in liquids. Prog Nucl Magn Reson Spectrosc 64:4–28

    Google Scholar 

  54. Turke MT, Tkach I, Reese M, Hofer P, Bennati M (2010) Optimization of dynamic nuclear polarization experiments in aqueous solution at 15 MHz/9.7 GHz: a comparative study with DNP at 140 MHz/94 GHz. Phys Chem Chem Phys 12:5893–5901

    Google Scholar 

  55. Turke MT, Parigi G, Luchinat C, Bennati M (2012) Overhauser DNP with 15N labelled Fremy’s salt at 0.35 Tesla. Phys Chem Chem Phys 14:502–510

    Google Scholar 

  56. Wind RA, Ardenkjaer-Larsen JH (1999) (1)H DNP at 1.4 T of water doped with a triarylmethyl-based radical. J Magn Reson 141:347–354

    CAS  Google Scholar 

  57. Wind RA, Bai S, Hu JZ, Solum MS, Ellis PD, Grant DM, Pugmire RJ, Taylor CMV, Yonker CR (2000) H-1 dynamic nuclear polarization in supercritical ethylene at 1.4 T. J Magn Reson 143:233–239

    CAS  Google Scholar 

  58. Villanueva-Garibay JA, Annino G, van Bentum PJM, Kentgens APM (2010) Pushing the limit of liquid-state dynamic nuclear polarization at high field. Phys Chem Chem Phys 12:5846–5849

    CAS  Google Scholar 

  59. Loening NM, Rosay M, Weis V, Griffin RG (2002) Solution-state dynamic nuclear polarization at high magnetic field. J Am Chem Soc 124:8808–8809

    CAS  Google Scholar 

  60. Prandolini MJ, Denysenkov VP, Gafurov M, Lyubenova S, Endeward B, Bennati M, Prisner TF (2008) First DNP results from a liquid water-TEMPOL sample at 400 MHz and 260 GHz. Appl Magn Reson 34:399–407

    CAS  Google Scholar 

  61. Denysenkov VP, Prandolini MJ, Krahn A, Gafurov M, Endeward B, Prisner TF (2008) High-field DNP spectrometer for liquids. Appl Magn Reson 34:289–299

    CAS  Google Scholar 

  62. Denysenkov V, Prandolini MJ, Gafurov M, Sezer D, Endeward B, Prisner TF (2010) Liquid state DNP using a 260 GHz high power gyrotron. Phys Chem Chem Phys 12:5786–5790

    CAS  Google Scholar 

  63. Sezer D, Gafurov M, Prandolini MJ, Denysenkov VP, Prisner TF (2009) Dynamic nuclear polarization of water by a nitroxide radical: rigorous treatment of the electron spin saturation and comparison with experiments at 9.2 Tesla. Phys Chem Chem Phys 11:6638–6653

    CAS  Google Scholar 

  64. Sezer D, Prandolini MJ, Prisner TF (2009) Dynamic nuclear polarization coupling factors calculated from molecular dynamics simulations of a nitroxide radical in water. Phys Chem Chem Phys 11:6626–6637

    CAS  Google Scholar 

  65. Cheng CY, Wang JY, Kausik R, Lee KY, Han S (2012) An ultrasensitive tool exploiting hydration dynamics to decipher weak lipid membrane–polymer interactions. J Magn Reson 215:115–119

    CAS  Google Scholar 

  66. Lingwood MD, Sederman AJ, Mantle MD, Gladden LF, Han S (2012) Overhauser dynamic nuclear polarization amplification of NMR flow imaging. J Magn Reson 216:94–100

    CAS  Google Scholar 

  67. Armstrong BD, Choi J, Lopez C, Wesener DA, Hubbell W, Cavagnero S, Han S (2011) Site-specific hydration dynamics in the nonpolar core of a molten globule by dynamic nuclear polarization of water. J Am Chem Soc 133:5987–5995

    CAS  Google Scholar 

  68. Franck JM, Pavlova A, Han S (2012) Quantitative cw Overhauser DNP analysis of hydration dynamics. In: Abstracts of papers of the American Chemical Society, p 241. arXiv:1206.0510 [cond-mat.soft]

    Google Scholar 

  69. Kausik R, Han S (2011) Dynamics and state of lipid bilayer-internal water unraveled with solution state (1)H dynamic nuclear polarization. Phys Chem Chem Phys 13:7732–7746

    CAS  Google Scholar 

  70. Reese M, Lennartz D, Marquardsen T, Hofer P, Tavernier A, Carl P, Schippmann T, Bennati M, Carlomagno T, Engelke F et al (2008) Construction of a liquid-state NMR DNP shuttle spectrometer: first experimental results and evaluation of optimal performance characteristics. Appl Magn Reson 34:301–311

    CAS  Google Scholar 

  71. Reese M, Turke MT, Tkach I, Parigi G, Luchinat C, Marquardsen T, Tavernier A, Hofer P, Engelke F, Griesinger C et al (2009) (1)H and (13)C dynamic nuclear polarization in aqueous solution with a two-field (0.35 T/14 T) shuttle DNP spectrometer. J Am Chem Soc 131:15086–15087

    CAS  Google Scholar 

  72. Krahn A, Lottmann P, Marquardsen T, Tavernier A, Turke MT, Reese M, Leonov A, Bennati M, Hoefer P, Engelke F et al (2010) Shuttle DNP spectrometer with a two-center magnet. Phys Chem Chem Phys 12:5830–5840

    CAS  Google Scholar 

  73. McCarney ER, Armstrong BD, Lingwood MD, Han S (2007) Hyperpolarized water as an authentic magnetic resonance imaging contrast agent. Proc Natl Acad Sci USA 104:1754–1759

    CAS  Google Scholar 

  74. Lingwood MD, Siaw TA, Sailasuta N, Ross BD, Bhattacharya P, Han SG (2010) Continuous flow overhauser dynamic nuclear polarization of water in the fringe field of a clinical magnetic resonance imaging system for authentic image contrast. J Magn Reson 205:247–254

    CAS  Google Scholar 

  75. McCarney ER, Han S (2008) Spin-labeled gel for the production of radical-free dynamic nuclear polarization enhanced molecules for NMR spectroscopy and imaging. J Magn Reson 190:307–315

    CAS  Google Scholar 

  76. Golman K, Ardenaer-Larsen JH, Petersson JS, Mansson S, Leunbach I (2003) Molecular imaging with endogenous substances. Proc Natl Acad Sci USA 100:10435–10439

    CAS  Google Scholar 

  77. Giraudeau P, Shrot Y, Frydman L (2009) Multiple ultrafast, broadband 2D NMR spectra of hyperpolarized natural products. J Am Chem Soc 131:13902–13903

    CAS  Google Scholar 

  78. Mishkovsky M, Frydman L (2008) Progress in hyperpolarized ultrafast 2D NMR spectroscopy. Chemphyschem 9:2340–2348

    CAS  Google Scholar 

  79. Frydman L, Blazina D (2007) Ultrafast two-dimensional nuclear magnetic resonance spectroscopy of hyperpolarized solutions. Nat Phys 3:415–419

    CAS  Google Scholar 

  80. Kurhanewicz J, Bok R, Nelson SJ, Vigneron DB (2008) Current and potential applications of clinical C-13 MR spectroscopy. J Nucl Med 49:341–344

    CAS  Google Scholar 

  81. Kurhanewicz J, Vigneron DB, Brindle K, Chekmenev EY, Comment A, Cunningham CH, DeBerardinis RJ, Green GG, Leach MO, Rajan SS et al (2011) Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia 13:81–97

    Google Scholar 

  82. Nelson SJ, Vigneron D, Kurhanewicz J, Chen A, Bok R, Hurd R (2008) DNP-hyperpolarized C-13 magnetic resonance metabolic imaging for cancer applications. Appl Magn Reson 34:533–544

    CAS  Google Scholar 

  83. Kohler SJ, Yen Y, Wolber J, Chen AP, Albers MJ, Bok R, Zhang V, Tropp J, Nelson S, Vigneron DB et al (2007) In vivo (13)carbon metabolic imaging at 3T with hyperpolarized C-13-1-pyruvate. Magn Reson Med 58:65–69

    CAS  Google Scholar 

  84. Park I, Larson PEZ, Zierhut ML, Hu S, Bok R, Ozawa T, Kurhanewicz J, Vigneron DB, VandenBerg SR, James CD et al (2010) Hyperpolarized (13)C magnetic resonance metabolic imaging: application to brain tumors. Neuro Oncol 12:133–144

    Google Scholar 

  85. Gallagher FA, Bohndiek SE, Kettunen MI, Lewis DY, Soloviev D, Brindle KM (2011) Hyperpolarized (13)C MRI and PET: in vivo tumor biochemistry. J Nucl Med 52:1333–1336

    CAS  Google Scholar 

  86. Gallagher FA, Kettunen MI, Brindle KM (2011) Imaging pH with hyperpolarized (13)C. NMR Biomed 24:1006–1015

    CAS  Google Scholar 

  87. Gallagher FA, Kettunen MI, Day SE, Hu DE, Ardenkjaer-Larsen JH, In’t Zandt R, Jensen PR, Karlsson M, Golman K, Lerche MH et al (2008) Magnetic resonance imaging of pH in vivo using hyperpolarized (13)C-labelled bicarbonate. Nature 453:940–943

    CAS  Google Scholar 

  88. Golman K, In’t Zandt R, Thaning M (2006) Real-time metabolic imaging. Proc Natl Acad Sci USA 103:11270–11275

    CAS  Google Scholar 

  89. Dementyev AE, Cory DG, Ramanathan C (2008) Dynamic nuclear polarization in silicon microparticles. Phys Rev Lett 100

    Google Scholar 

  90. Dementyev AE, Cory DG, Ramanathan C (2008) Rapid diffusion of dipolar order enhances dynamic nuclear polarization. Phys Rev B 77:024413

    Google Scholar 

  91. Brindle KM, Bohndiek SE, Gallagher FA, Kettunen MI (2011) Tumor imaging using hyperpolarized (13)C magnetic resonance. Magn Reson Med 66:505–519

    Google Scholar 

  92. von Morze C, Larson PEZ, Hu S, Keshari K, Wilson DM, Ardenkjaer-Larsen JH, Goga A, Bok R, Kurhanewicz J, Vigneron DB (2011) Imaging of blood flow using hyperpolarized [(13)C] urea in preclinical cancer models. J Magn Reson Imaging 33:692–697

    Google Scholar 

  93. Lau AZ, Chen AP, Hurd RE, Cunningham CH (2011) Spectral-spatial excitation for rapid imaging of DNP compounds. NMR Biomed 24:988–996

    CAS  Google Scholar 

  94. Krummenacker JG, Denysenkov VP, Terekhov M, Schreiber LM, Prisner TF (2012) DNP in MRI: an in-bore approach at 1.5T. J Magn Reson 215:94–99

    CAS  Google Scholar 

  95. Marjanska M, Iltis I, Shestov AA, Deelchand DK, Nelson C, Ugurbil K, Henry PG (2010) In vivo (13)C spectroscopy in the rat brain using hyperpolarized [1-(13)C]pyruvate and [2-(13)C]pyruvate. J Magn Reson 206:210–218

    CAS  Google Scholar 

  96. Becerra LR, Gerfen GJ, Bellew BF, Bryant JA, Hall DA, Inati SJ, Weber RT, Un S, Prisner TF, McDermott AE et al (1995) A spectrometer for dynamic nuclear-polarization and electron-paramagnetic-resonance at high-frequencies. J Magn Reson A 117:28–40

    CAS  Google Scholar 

  97. Bajaj VS, Farrar CT, Hornstein MK, Mastovsky I, Vieregg J, Bryant J, Elena B, Kreischer KE, Temkin RJ, Griffin RG (2003) Dynamic nuclear polarization at 9T using a novel 250 GHz gyrotron microwave source. J Magn Reson 160:85–90

    CAS  Google Scholar 

  98. Hu KN, Song C, Yu HH, Swager TM, Griffin RG (2008) High-frequency dynamic nuclear polarization using biradicals: a multifrequency EPR lineshape analysis. J Chem Phys 128:052302

    Google Scholar 

  99. Akbey U, Franks WT, Linden A, Lange S, Griffin RG, van Rossum BJ, Oschkinat H (2010) Dynamic nuclear polarization of deuterated proteins. Angew Chem Int Ed 49:7803–7806

    CAS  Google Scholar 

  100. Hu KN (2011) Polarizing agents and mechanisms for high-field dynamic nuclear polarization of frozen dielectric solids. Solid State Nucl Magn Reson 40:31–41

    CAS  Google Scholar 

  101. Abragam A (1955) Overhauser effect in nonmetals. Phys Rev 98:1729–1735

    CAS  Google Scholar 

  102. Jeffries CD (1957) Polarization of nuclei by resonance saturation in paramagnetic crystals. Phys Rev 106:164–165

    CAS  Google Scholar 

  103. Pound RV (1950) Nuclear electric quadrupole interactions in crystals. Phys Rev 79:685–702

    CAS  Google Scholar 

  104. Hwang CF, Hill DA (1967) MAS DNP at MIT – cross effect DNP. Phys Rev Lett 19:1011–1013

    CAS  Google Scholar 

  105. Wollan DS (1976) Dynamic nuclear-polarization with an inhomogeneously broadened ESR line. 1. Theory. Phys Rev B 13:3671–3685

    CAS  Google Scholar 

  106. Abragam A, Goldman M (1978) Principles of dynamic nuclear-polarization. Rep Prog Phys 41:395–467

    CAS  Google Scholar 

  107. Farrar CT, Hall DA, Gerfen GJ, Inati SJ, Griffin RG (2001) Mechanism of dynamic nuclear polarization in high magnetic fields. J Chem Phys 114:4922–4933

    CAS  Google Scholar 

  108. Kozhushner MA, Provotorov BN (1964) On the theory of dynamic nuclear polarization in crystals. Soviet Phys Solid State 6:1152–1154

    Google Scholar 

  109. Ramanathan C (2008) Dynamic nuclear polarization and spin diffusion in nonconducting solids. Appl Magn Reson 34:409–421

    CAS  Google Scholar 

  110. Corzilius B, Smith AA, Griffin RG (2012) Solid effect in magic angle spinning dynamic nuclear polarization. J Chem Phys 137:054201

    Google Scholar 

  111. Smith AA, Corzilius B, Barnes AB, Maly T, Griffin RG (2012) Solid effect dynamic nuclear polarization and polarization pathways. J Chem Phys 136:015101

    Google Scholar 

  112. Hovav Y, Feintuch A, Vega S (2010) Theoretical aspects of dynamic nuclear polarization in the solid state – the solid effect. J Magn Reson 207:176–189

    CAS  Google Scholar 

  113. Hovav Y, Feintuch A, Vega S (2011) Dynamic nuclear polarization assisted spin diffusion for the solid effect case. J Chem Phys 134:074509

    Google Scholar 

  114. Shimon D, Hovav Y, Feintuch A, Goldfarb D, Vega S (2012) Dynamic nuclear polarization in the solid state: a transition between the cross effect and the solid effect. Phys Chem Chem Phys 14:5729–5743

    CAS  Google Scholar 

  115. Karabanov A, van der Drift A, Edwards LJ, Kuprov I, Kockenberger W (2012) Quantum mechanical simulation of solid effect dynamic nuclear polarisation using Krylov–Bogolyubov time averaging and a restricted state-space. Phys Chem Chem Phys 14:2658–2668

    CAS  Google Scholar 

  116. Kessenikh AV, Lushchikov VI, Manenkov AA, Taran YV (1963) Proton polarization in irradiated polyethylenes. Soviet Phys Solid State 5:321–329

    Google Scholar 

  117. Hovav Y, Feintuch A, Vega S (2012) Theoretical aspects of dynamic nuclear polarization in the solid state – the cross effect. J Magn Reson 214:29–41

    CAS  Google Scholar 

  118. Hovav Y, Feintuch A, Vega S (2013) Theoretical aspects of dynamic nuclear polarization in the solid state – spin temperature and thermal mixing. Phys Chem Chem Phys 15:188–203

    CAS  Google Scholar 

  119. Hu KN, Bajaj VS, Rosay M, Griffin RG (2007) High-frequency dynamic nuclear polarization using mixtures of TEMPO and trityl radicals. J Chem Phys 126:044512

    Google Scholar 

  120. Borghini M (1968) Spin-temperature model of nuclear dynamic polarization using free radicals. Phys Rev Lett 20:419–421

    CAS  Google Scholar 

  121. Atsarkin V, Kessenikh A (2012) Dynamic nuclear polarization in solids: the birth and development of the many-particle concept. Appl Magn Reson 43:7–19

    Google Scholar 

  122. Redfield AG (1955) Nuclear magnetic resonance saturation and rotary saturation in solids. Phys Rev 98:1787–1809

    CAS  Google Scholar 

  123. Provotorov BN (1962) Magnetic resonance saturation in crystals. Soviet Phys Jetp Ussr 14:1126–1131

    Google Scholar 

  124. Gadian DG, Panesar KS, Perez Linde AJ, Horsewill AJ, Kockenberger W, Owers-Bradley JR (2012) Preparation of highly polarized nuclear spin systems using brute-force and low-field thermal mixing. Phys Chem Chem Phys 14:5397–5402

    CAS  Google Scholar 

  125. Jannin S, Comment A, van der Klink JJ (2012) Dynamic nuclear polarization by thermal mixing under partial saturation. Appl Magn Reson 43:59–68

    CAS  Google Scholar 

  126. Lumata L, Jindal AK, Merritt ME, Malloy CR, Sherry AD, Kovacs Z (2011) DNP by thermal mixing under optimized conditions yields >60 000-fold enhancement of (89)Y NMR signal. J Am Chem Soc 133:8673–8680

    CAS  Google Scholar 

  127. Lumata L, Ratnakar SJ, Jindal A, Merritt M, Comment A, Malloy C, Sherry AD, Kovacs Z (2011) BDPA: an efficient polarizing agent for fast dissolution dynamic nuclear polarization NMR spectroscopy. Chem Eur J 17:10825–10827

    CAS  Google Scholar 

  128. Emsley L (2009) Spin diffusion for NMR crystallography. In: Encyclopedia of magnetic resonance. Wiley

    Google Scholar 

  129. Bloembergen N (1949) On the interaction of nuclear spins in a crystalline lattice. Physica 15:386–426

    CAS  Google Scholar 

  130. Goldman M (1970) Spin temperature and nuclear magnetic resonance in solids. Clarendon, Oxford

    Google Scholar 

  131. Thurber KR, Yau WM, Tycko R (2010) Low-temperature dynamic nuclear polarization at 9.4 T with a 30 mW microwave source. J Magn Reson 204:303–313

    CAS  Google Scholar 

  132. Granatstein VL, Parker RK, Armstrong CM (1999) Vacuum electronics at the dawn of the twenty-first century. Proc IEEE 87:702–716

    Google Scholar 

  133. Felch KL, Danly BG, Jory HR, Kreischer KE, Lawson W, Levush B, Temkin RJ (1999) Characteristics and applications of fast-wave gyrodevices. Proc IEEE 87:752–781

    Google Scholar 

  134. Nusinovich GS (2004) Introduction to the physics of gyrotrons. Johns Hopkins University Press, Baltimore

    Google Scholar 

  135. Kartikeyan MV, Borie E, Thumm MKA (2004) Gyrotrons: high power microwave and millimeter wave technology. Springer, Berlin

    Google Scholar 

  136. Kartikeyan MV, Borie E, Thumm M (2007) A 250 GHz, 50 W, CW second harmonic gyrotron. Int J Infrared Millimeter Waves 28:611–619

    Google Scholar 

  137. Joye CD, Griffin RG, Hornstein MK, Hu KN, Kreischer KE, Rosay M, Shapiro MA, Sirigiri JR, Temkin RJ, Woskov PP (2006) Operational characteristics of a 14-W 140-GHz gyrotron for dynamic nuclear polarization. IEEE Trans Plasma Sci 34:518–523

    Google Scholar 

  138. Han ST, Griffin RG, Hu KN, Joo CG, Joye CD, Mastovsky I, Shapiro MA, Sirigiri JR, Temkin RJ, Torrezan AC et al (2006) Continuous-wave submillimeter-wave gyrotrons. Proc Soc Photo Opt Instrum Eng 6373:63730C

    Google Scholar 

  139. Hornstein MK, Bajaj VS, Griffin RG, Temkin RJ (2006) Continuous-wave operation of a 460-GHz second harmonic gyrotron oscillator. IEEE Trans Plasma Sci 34:524–533

    Google Scholar 

  140. Hunter RI, Cruickshank PAS, Bolton DR, Riedi PC, Smith GM (2010) High power pulsed dynamic nuclear polarisation at 94 GHz. Phys Chem Chem Phys 12:5752–5756

    CAS  Google Scholar 

  141. Kryukov EV, Newton ME, Pike KJ, Bolton DR, Kowalczyk RM, Howes AP, Smith ME, Dupree R (2010) DNP enhanced NMR using a high-power 94 GHz microwave source: a study of the TEMPOL radical in toluene. Phys Chem Chem Phys 12:5757–5765

    CAS  Google Scholar 

  142. Leggett J, Hunter R, Granwehr J, Panek R, Perez-Linde AJ, Horsewill AJ, McMaster J, Smith G, Kockenberger W (2010) A dedicated spectrometer for dissolution DNP NMR spectroscopy. Phys Chem Chem Phys 12:5883–5892

    CAS  Google Scholar 

  143. Matsuki Y, Takahashi H, Ueda K, Idehara T, Ogawa I, Toda M, Akutsu H, Fujiwara T (2010) Dynamic nuclear polarization experiments at 14.1 T for solid-state NMR. Phys Chem Chem Phys 12:5799–5803

    CAS  Google Scholar 

  144. Barnes AB, Corzilius B, Mak-Jurkauskas ML, Andreas LB, Bajaj VS, Matsuki Y, Belenky ML, Lugtenburg J, Sirigiri JR, Temkin RJ et al (2010) Resolution and polarization distribution in cryogenic DNP/MAS experiments. Phys Chem Chem Phys 12:5861–5867

    CAS  Google Scholar 

  145. Woskov PP, Bajaj VS, Hornstein MK, Temkin RJ, Griffin RG (2005) Corrugated waveguide and directional coupler for CW 250-GHz gyrotron DNP experiments. IEEE Trans Microw Theory Tech 53:1863–1869

    Google Scholar 

  146. Weis V, Bennati M, Rosay M, Bryant JA, Griffin RG (1999) High-field DNP and ENDOR with a novel multiple-frequency resonance structure. J Magn Reson 140:293–299

    CAS  Google Scholar 

  147. Barnes AB, De Paepe G, van der Wel PCA, Hu KN, Joo CG, Bajaj VS, Mak-Jurkauskas ML, Sirigiri JR, Herzfeld J, Temkin RJ et al (2008) High-field dynamic nuclear polarization for solid and solution biological NMR. Appl Magn Reson 34:237–263

    CAS  Google Scholar 

  148. Wind RA, Anthonio FE, Duijvestijn MJ, Smidt J, Trommel J, Devette GMC (1983) Experimental setup for enhanced C-13 NMR-spectroscopy in solids using dynamic nuclear-polarization. J Magn Reson 52:424–434

    CAS  Google Scholar 

  149. Cho H, Baugh J, Ryan CA, Cory DG, Ramanathan C (2007) Low temperature probe for dynamic nuclear polarization and multiple-pulse solid-state NMR. J Magn Reson 187:242–250

    CAS  Google Scholar 

  150. Nanni EA, Barnes AB, Matsuki Y, Woskov PP, Corzilius B, Griffin RG, Temkin RJ (2011) Microwave field distribution in a magic angle spinning dynamic nuclear polarization NMR probe. J Magn Reson 210:16–23

    CAS  Google Scholar 

  151. Potapov A, Thurber KR, Yau WM, Tycko R (2012) Dynamic nuclear polarization-enhanced H-1-C-13 double resonance NMR in static samples below 20 K. J Magn Reson 221:32–40

    CAS  Google Scholar 

  152. Maly T, Cui D, Griffin RG, Miller AF (2012) 1H Dynamic nuclear polarization based on an endogenous radical. J Phys Chem B 116:7055–7065

    CAS  Google Scholar 

  153. Ardenkjaer-Larsen JH, Laursen I, Leunbach I, Ehnholm G, Wistrand LG, Petersson JS, Golman K (1998) EPR and DNP properties of certain novel single electron contrast agents intended for oximetric imaging. J Magn Reson 133:1–12

    CAS  Google Scholar 

  154. Koelsch CF (1957) Syntheses with triarylvinylmagnesium bromides – alpha, gamma-bisdiphenylene-beta-phenylallyl, a stable free radical. J Am Chem Soc 79:4439–4441

    CAS  Google Scholar 

  155. Duijvestijn MJ, Wind RA, Smidt J (1986) A quantitative investigation of the dynamic nuclear-polarization effect by fixed paramagnetic centra of abundant and rare spins in solids at room-temperature. Physica B C 138:147–170

    CAS  Google Scholar 

  156. Hu KN, Yu HH, Swager TM, Griffin RG (2004) Dynamic nuclear polarization with biradicals. J Am Chem Soc 126:10844–10845

    CAS  Google Scholar 

  157. Matsuki Y, Maly T, Ouari O, Karoui H, Le Moigne F, Rizzato E, Lyubenova S, Herzfeld J, Prisner T, Tordo P et al (2009) Dynamic nuclear polarization with a rigid biradical. Angew Chem Int Ed 48:4996–5000

    CAS  Google Scholar 

  158. Salnikov E, Rosay M, Pawsey S, Ouari O, Tordo P, Bechinger B (2010) Solid-state NMR spectroscopy of oriented membrane polypeptides at 100 K with signal enhancement by dynamic nuclear polarization. J Am Chem Soc 132:5940–5941

    CAS  Google Scholar 

  159. Dane EL, Corzilius B, Rizzato E, Stocker P, Maly T, Smith AA, Griffin RG, Ouari O, Tordo P, Swager TM (2012) Rigid orthogonal bis-TEMPO biradicals with improved solubility for dynamic nuclear polarization. J Org Chem 77:1789–1797

    CAS  Google Scholar 

  160. Kiesewetter MK, Corzilius B, Smith AA, Griffin RG, Swager TM (2012) Dynamic nuclear polarization with a water-soluble rigid biradical. J Am Chem Soc 134:4537–4540

    CAS  Google Scholar 

  161. Ysacco C, Rizzato E, Virolleaud MA, Karoui H, Rockenbauer A, Le Moigne F, Siri D, Ouari O, Griffin RG, Tordo P (2010) Properties of dinitroxides for use in dynamic nuclear polarization (DNP). Phys Chem Chem Phys 12:5841–5845

    CAS  Google Scholar 

  162. Zagdoun A, Casano G, Ouari O, Lapadula G, Rossini AJ, Lelli M, Baffert M, Gajan D, Veyre L, Maas WE et al (2012) A slowly relaxing rigid biradical for efficient dynamic nuclear polarization surface-enhanced NMR spectroscopy: expeditious characterization of functional group manipulation in hybrid materials. J Am Chem Soc 134:2284–2291

    CAS  Google Scholar 

  163. Corzilius B, Smith AA, Barnes AB, Luchinat C, Bertini I, Griffin RG (2011) High-field dynamic nuclear polarization with high-spin transition metal ions. J Am Chem Soc 133:5648–5651

    CAS  Google Scholar 

  164. Maly T, Andreas LB, Smith AA, Griffin RG (2010) (2)H-DNP-enhanced (2)H-(13)C solid-state NMR correlation spectroscopy. Phys Chem Chem Phys 12:5872–5878

    CAS  Google Scholar 

  165. Maly T, Miller AF, Griffin RG (2010) In situ high-field dynamic nuclear polarization-direct and indirect polarization of (13)C nuclei. Chemphyschem 11:999–1001

    CAS  Google Scholar 

  166. Iijima T (1998) Thermal analysis of cryoprotective solutions for red blood cells. Cryobiology 36:165–173

    CAS  Google Scholar 

  167. Akbey U, Linden A, Oschkinat H (2012) High-temperature dynamic nuclear polarization enhanced magic-angle-spinning NMR. Appl Magn Reson 43:81–90

    CAS  Google Scholar 

  168. Akbey U, Rossum BJ, Oschkinat H (2012) Practical aspects of high-sensitivity multidimensional (13)C MAS NMR spectroscopy of perdeuterated proteins. J Magn Reson 217:77–85

    CAS  Google Scholar 

  169. Lange S, Linden AH, Akbey U, Franks WT, Loening NM, van Rossum BJ, Oschkinat H (2012) The effect of biradical concentration on the performance of DNP-MAS-NMR. J Magn Reson 216:209–212

    CAS  Google Scholar 

  170. Lesage A, Lelli M, Gajan D, Caporini MA, Vitzthum V, Mieville P, Alauzun J, Roussey A, Thieuleux C, Mehdi A et al (2010) Surface enhanced NMR spectroscopy by dynamic nuclear polarization. J Am Chem Soc 132:15459–15461

    CAS  Google Scholar 

  171. Siemer AB, Huang KY, McDermott AE (2010) Protein–ice interaction of an antifreeze protein observed with solid-state NMR. Proc Natl Acad Sci USA 107:17580–17585

    CAS  Google Scholar 

  172. Franks WT, Wylie BJ, Schmidt HLF, Nieuwkoop AJ, Mayrhofer RM, Shah GJ, Graesser DT, Rienstra CM (2008) Dipole tensor-based atomic-resolution structure determination of a nanocrystalline protein by solid-state NMR. Proc Natl Acad Sci USA 105:4621–4626

    CAS  Google Scholar 

  173. Barnes AB, Mak-Jurkauskas ML, Matsuki Y, Bajaj VS, van der Wel PCA, DeRocher R, Bryant J, Sirigiri JR, Temkin RJ, Lugtenburg J et al (2009) Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization. J Magn Reson 198:261–270

    CAS  Google Scholar 

  174. Franks WT, Zhou DH, Wylie BJ, Money BG, Graesser DT, Frericks HL, Sahota G, Rienstra CM (2005) Magic-angle spinning solid-state NMR spectroscopy of the beta 1 immunoglobulin binding domain of protein G (GB1): N-15 and C-13 chemical shift assignments and conformational analysis. J Am Chem Soc 127:12291–12305

    CAS  Google Scholar 

  175. Doster W (2010) The protein-solvent glass transition. Biochim Biophys Acta 1804:3–14

    CAS  Google Scholar 

  176. Tompa K, Bánki P, Bokor M, Kamasa P, Lasanda G, Tompa P (2009) Interfacial water at protein surfaces: wide-line NMR and DSC characterization of hydration in ubiquitin solutions. Biophys J 96:2789–2798

    CAS  Google Scholar 

  177. Lelli M, Gajan D, Lesage A, Caporini MA, Vitzthum V, Mieville P, Heroguel F, Rascon F, Roussey A, Thieuleux C et al (2011) Fast characterization of functionalized silica materials by silicon-29 surface-enhanced NMR spectroscopy using dynamic nuclear polarization. J Am Chem Soc 133:2104–2107

    CAS  Google Scholar 

  178. Lafon O, Rosay M, Aussenac F, Lu XY, Trebosc J, Cristini O, Kinowski C, Touati N, Vezin H, Amoureux JP (2011) Beyond the silica surface by direct silicon-29 dynamic nuclear polarization. Angew Chem Int Ed 50:8367–8370

    CAS  Google Scholar 

  179. Akbey U, Corzilius B, Griffin RG, Oschkinat H. In preperation

    Google Scholar 

  180. Thurber KR, Tycko R (2009) Measurement of sample temperatures under magic-angle spinning from the chemical shift and spin-lattice relaxation rate of 79Br in KBr powder. J Magn Reson 196:84–87

    CAS  Google Scholar 

  181. Mentink-Vigier F, Akbey U, Hovav Y, Vega S, Oschkinat H, Feintuch A (2012) Fast passage dynamic nuclear polarization on rotating solids. J Magn Reson 224:13–21

    CAS  Google Scholar 

  182. Thurber KR, Tycko R (2012) Theory for cross effect dynamic nuclear polarization under magic-angle spinning in solid state nuclear magnetic resonance: the importance of level crossings. J Chem Phys 137:084508

    Google Scholar 

  183. Zagdoun A, Rossini AJ, Conley MP, Grüning WR, Schwarzwälder M, Lelli M, Franks WT, Oschkinat H, Copéret C, Emsley L et al (2013) Improved dynamic nuclear polarization surface-enhanced NMR spectroscopy through controlled incorporation of deuterated functional groups. Angew Chem Int Ed 52:1222–1225

    CAS  Google Scholar 

  184. Jacso T, Franks WT, Rose H, Fink U, Broecker J, Keller S, Oschkinat H, Reif B (2012) Characterization of membrane proteins in isolated native cellular membranes by dynamic nuclear polarization solid-state NMR spectroscopy without purification and reconstitution. Angew Chem Int Ed 51:432–435

    CAS  Google Scholar 

  185. Takahashi H, Ayala I, Bardet M, De Paëpe G, Simorre JP, Hediger S (2013) Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization. J Am Chem Soc 135:5105–5110

    Google Scholar 

  186. Renault M, Pawsey S, Bos MP, Koers EJ, Nand D, Tommassen-van BR, Rosay M, Tommassen J, Maas WE, Baldus M (2012) Solid-state NMR spectroscopy on cellular preparations enhanced by dynamic nuclear polarization. Angew Chem Int Ed Engl 51:2998–3001

    CAS  Google Scholar 

  187. Lerche MH, Meier S, Jensen PR, Hustvedt SO, Karlsson M, Duus JO, Ardenkjaer-Larsen JH (2011) Quantitative dynamic nuclear polarization-NMR on blood plasma for assays of drug metabolism. NMR Biomed 24:96–103

    CAS  Google Scholar 

  188. Dafni H, Ronen SM (2010) Dynamic nuclear polarization in metabolic imaging of metastasis: common sense, hypersense and compressed sensing. Cancer Biomark 7:189–199

    Google Scholar 

  189. Rossini AJ, Zagdoun A, Hegner F, Schwarzwälder M, Gajan D, Copéret C, Lesage A, Emsley L (2012) Dynamic nuclear polarization NMR spectroscopy of microcrystalline solids. J Am Chem Soc 134:16899–16908

    CAS  Google Scholar 

  190. Rossini AJ, Zagdoun A, Lelli M, Canivet J, Aguado S, Ouari O, Tordo P, Rosay M, Maas WE, Copéret C et al (2012) Dynamic nuclear polarization enhanced solid-state NMR spectroscopy of functionalized metal – organic frameworks. Angew Chem Int Ed 51:123–127

    CAS  Google Scholar 

  191. Rossini AJ, Zagdoun A, Lelli M, Canivet J, Aguado S, Ouari O, Tordo P, Rosay M, Maas WE, Coperet C et al (2012) Dynamic nuclear polarization enhanced solid-state NMR spectroscopy of functionalized metal-organic frameworks. Angew Chem Int Ed Engl 51:123–127

    CAS  Google Scholar 

  192. Rossini AJ, Zagdoun A, Lelli M, Gajan D, Rascon F, Rosay M, Maas WE, Coperet C, Lesage A, Emsley L (2012) One hundred fold overall sensitivity enhancements for silicon-29 NMR spectroscopy of surfaces by dynamic nuclear polarization with CPMG acquisition. Chem Sci 3:108–115

    CAS  Google Scholar 

  193. Lafon O, Thankamony ASL, Kobayashi T, Carnevale D, Vitzthum V, Slowing II, Kandel K, Vezin H, Amoureux JP, Bodenhausen G et al (2012) Mesoporous silica nanoparticles loaded with surfactant: low temperature magic angle spinning 13C and 29Si NMR enhanced by dynamic nuclear polarization. J Phys Chem C 117:1375–1382

    Google Scholar 

  194. Vitzthum V, Mieville P, Carnevale D, Caporini MA, Gajan D, Coperet C, Lelli M, Zagdoun A, Rossini AJ, Lesage A et al (2012) Dynamic nuclear polarization of quadrupolar nuclei using cross polarization from protons: surface-enhanced aluminium-27 NMR. Chem Commun (Camb) 48:1988–1990

    CAS  Google Scholar 

  195. Lafon O, Thankamony ASL, Rosay M, Aussenac F, Lu X, Trebosc J, Bout-Roumazeilles V, Vezin H, Amoureux JP (2013) Indirect and direct 29Si dynamic nuclear polarization of dispersed nanoparticles. Chem Commun (Camb) 49:2864–2866

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge very helpful discussions and proof reading of Shimon Vega, Akiva Feintuch, Yonatan Hevov, and Thorsten Maly. UA and HO acknowledge funding from the European Union Seventh Framework programs (FP7/2007–2013 under the grant agreements 261863 (Bio-NMR) and Deutsche Forschungsgemeinschaft (grant 05106/12-1 of the DIP program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ümit Akbey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Akbey, Ü., Franks, W.T., Linden, A., Orwick-Rydmark, M., Lange, S., Oschkinat, H. (2013). Dynamic Nuclear Polarization Enhanced NMR in the Solid-State. In: Kuhn, L. (eds) Hyperpolarization Methods in NMR Spectroscopy. Topics in Current Chemistry, vol 338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2013_436

Download citation

Publish with us

Policies and ethics