Skip to main content

Characteristics of a σ-Hole and the Nature of a Halogen Bond

  • Chapter
  • First Online:
Halogen Bonding II

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 359))

Abstract

The nature of halogen bonding in 128 complexes was investigated using advanced quantum mechanical calculations. First, isolated halogen donors were studied and their σ-holes were described in terms of size and magnitude. Later, both partners in the complex were considered and their interaction was described in terms of DFT-SAPT decomposition. The whole set of complexes under study was split into two categories on the basis of their stabilisation energy. The first subset with 38 complexes possesses stabilisation energies in the range 7–32 kcal/mol, while the second subset with 90 complexes has stabilisation energies smaller than 7 kcal/mol. The first subset is characterised by small intermolecular distances (less than 2.5 Å) and a significant contraction of van der Waals (vdW) distance (sum of vdW radii). Here the polarisation/electrostatic energy is dominant, mostly followed by induction and dispersion energies. The importance of induction energy reflects the charge-transfer character of the respective halogen bonds. Intermolecular distances in the second subset are large and the respective contraction of vdW distance upon the formation of a halogen bond is much smaller. Here the dispersion energy is mostly dominant, followed by polarisation and induction energies. Considering the whole set of complexes, we conclude that the characteristic features of their halogen bonds arise from the concerted action of polarisation and dispersion energies and neither of these energies can be considered as dominant. Finally, the magnitude of the σ-hole and DFT-SAPT stabilisation energy correlates only weakly within the whole set of complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hobza P, Müller Dethlef K (2009) Non-covalent interactions. Royal Society of Chemistry, Cambridge

    Google Scholar 

  2. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  3. Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178–11189

    Article  CAS  Google Scholar 

  4. Politzer P, Murray JS (2013) ChemPhysChem 14:278–294

    Article  CAS  Google Scholar 

  5. Murray J, Lane P, Politzer P (2009) J Mol Model 15:723–729

    Article  CAS  Google Scholar 

  6. Řezáč J, Riley KE, Hobza P (2012) J Chem Theory Comput 8:4285–4292

    Article  Google Scholar 

  7. Kozuch S, Martin JML (2013) J Chem Theory Comput 9:1918–1931

    Article  CAS  Google Scholar 

  8. Deepa P, Sedlak R, Hobza P (2014) Phys Chem Chem Phys 16:6679

    Article  CAS  Google Scholar 

  9. Desiraju GR, Ho PS, Kloo L, Legon AC, Marguardt R, Metrangolo P, Politzer P, Resnati G, Rissanen K (2013) IUPAC definition of halogen bond. Pure Appl Chem 8:1711–1713

    Google Scholar 

  10. Riley KE, Hobza P (2013) Phys Chem Chem Phys 15:17742

    Article  CAS  Google Scholar 

  11. Kolář M, Hostaš J, Hobza P (2014) Phys Chem Chem Phys 16:9987

    Article  Google Scholar 

  12. Kolář M, Carloni P, Hobza P (2014) Phys Chem Chem Phys 16:19111

    Article  Google Scholar 

  13. Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979

    Article  CAS  Google Scholar 

  14. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  15. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  16. Adamo C, Barone V (1999) J Chem Phys 110:6158–6169

    Article  CAS  Google Scholar 

  17. Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys 119:11113

    Article  CAS  Google Scholar 

  18. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian, Inc., Wallingford

    Google Scholar 

  19. Jeziorski B, Moszynski R, Szalewicz K (1994) Chem Rev 94:1887–1930

    Article  CAS  Google Scholar 

  20. Hesselmann A, Jansen G (2002) Chem Phys Lett 357:464–470

    Article  CAS  Google Scholar 

  21. Hesselmann A, Jansen G (2002) Chem Phys Lett 362:319–325

    Article  CAS  Google Scholar 

  22. Misquitta AJ, Szalewicz K (2002) Chem Phys Lett 357:301–306

    Article  CAS  Google Scholar 

  23. Jansen G, Hesselmann A (2001) J Phys Chem A 105:11156–11157

    Article  CAS  Google Scholar 

  24. Hesselmann A, Jansen G (2003) Chem Phys Lett 367:778–784

    Article  CAS  Google Scholar 

  25. Hesselmann A, Jansen G, Schütz M (2005) J Chem Phys 122:014103–014119

    Article  CAS  Google Scholar 

  26. Hesselmann A, Jansen G, Schütz M (2006) J Am Chem Soc 128:11730–11731

    Article  CAS  Google Scholar 

  27. Podeszwa R, Bukowski R, Szalewicz K (2006) J Phys Chem A 110:10345–10354

    Article  CAS  Google Scholar 

  28. Williams HL, Chabalowski CF (2001) J Phys Chem A 105:646–659

    Article  CAS  Google Scholar 

  29. Werner H-J, Knowles PJ, Manby FR, Schuetz M, Celani P, Knizia G, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DLO, Deegan MJ, Dobbyn AJ, Eckert F, Goll F, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Koeppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklass A, Palmieri P, Pflueger K, Pitzer K, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Wolf A (2010) MOLPRO, version 2010.1, a package of ab initio programs. See http://www.molpro.net

  30. TURBOMOLE V6.3 2011, a development of the University of Karlsruhe and the Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; http://www.turbomole.com

  31. Price SL, Stone AJ, Lucas J, Rowland RS, Thornley AE (1994) J Am Chem Soc 116:4910–4918

    Article  CAS  Google Scholar 

  32. Awwadi FF, Willett RD, Peterson KA, Twamley B (2006) Chem Eur J 12:8952–8960

    Article  CAS  Google Scholar 

  33. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  Google Scholar 

  34. Munusamy E, Sedlak R, Hobza P (2011) ChemPhysChem 12:3253

    Article  CAS  Google Scholar 

  35. Riley KE, Řezáč J, Hobza P (2013) J Mol Model 19:2879

    Article  CAS  Google Scholar 

  36. Sedlak R, Deepa P, Hobza P (2014) J Phys Chem A 118:3846–3855

    Article  CAS  Google Scholar 

  37. Lu YX, Fan J-C, Zaho W-N, Jiang Y-J, Yu Q-S (2009) J Comput Chem 30:725

    Article  CAS  Google Scholar 

  38. Wang W (2011) J Phys Chem A 115:9294–9299

    Article  CAS  Google Scholar 

  39. Chudzinski MG, Taylor MS (2012) J Org Chem 77:3483–3491

    Article  CAS  Google Scholar 

  40. Trnka J, Sedlak R, Kolář M, Hobza P (2013) J Phys Chem A 117:4331–4337

    Article  CAS  Google Scholar 

  41. Mukherjee A, Desiraju GR (2011) Cryst Growth Des 11:3735–3739

    Article  CAS  Google Scholar 

  42. Cincic D, Friscic T, Jones W (2008) J Am Chem Soc 130:7524–7525

    Article  CAS  Google Scholar 

  43. Cauliez P, Polo V, Roisnel T, Llusar R, Fourmigue M (2010) CrystEngComm 12:558–566

    Article  CAS  Google Scholar 

  44. Cincic D, Friscic T, Jones W (2011) CrystEngComm 13:3224–3231

    Article  CAS  Google Scholar 

  45. Jay JI, Padgett CW, Walsh RDB, Hanks TW, Pennington WT (2001) Cryst Growth Des 1:501–507

    Article  CAS  Google Scholar 

  46. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  47. Boys SF, Bernardi F (2007) Mol Phys 19:553–566

    Article  Google Scholar 

  48. Hesselmann A (2011) J Phys Chem A 115:11321–11330

    Article  CAS  Google Scholar 

  49. Riley K, Murray J, Fanfrlík J, Řezáč J, Solá R, Concha M, Ramos F, Politzer P (2011) J Mol Model 17:3309–3318

    Article  CAS  Google Scholar 

  50. Riley KE, Murray JS, Politzer P, Concha MC, Hobza P (2008) J Chem Theory Comput 5:155–163

    Article  Google Scholar 

  51. Hardegger LA, Kuhn B, Spinnler B, Anselm L, Ecabert R, Stihle M, Gsell B, Thoma R, Diez J, Benz J, Plancher J-M, Hartmann G, Banner DW, Haap W, Diederich F (2011) Angew Chem Int Ed 50:314–318

    Article  CAS  Google Scholar 

  52. Fanfrlík J, Kolář M, Kamlar M, Hurný D, Ruiz FX, Cousido-Siah A, Mitschler A, Řezáč J, Munusamy E, Lepšík M, Matějíček P, Veselý J, Podjarny A, Hobza P (2013) ACS Chem Biol 8:2484–2492

    Article  Google Scholar 

  53. El Kerdawy A, Murray JS, Politzer P, Bleiziffer P, Heßelmann A, Görling A, Clark T (2013) J Chem Theory Comput 9:2264–2275

    Article  Google Scholar 

Download references

Acknowledgements

This work was part of the Research Project RVO: 61388963 of the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic. It was also supported by the Czech Science Foundation [P208/12/G016] and the operational program Research and Development for Innovations of the European Social Fund (CZ 1.05/2.1.00/03/0058). MHK acknowledges the kind support provided by the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Hobza .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(DOC 134 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kolář, M.H., Deepa, P., Ajani, H., Pecina, A., Hobza, P. (2014). Characteristics of a σ-Hole and the Nature of a Halogen Bond. In: Metrangolo, P., Resnati, G. (eds) Halogen Bonding II. Topics in Current Chemistry, vol 359. Springer, Cham. https://doi.org/10.1007/128_2014_606

Download citation

Publish with us

Policies and ethics