Skip to main content

Iron Catalyst in the Preparation of Polyolefin Composites

  • Chapter
  • First Online:
Polyolefins: 50 years after Ziegler and Natta II

Part of the book series: Advances in Polymer Science ((POLYMER,volume 258))

Abstract

The polymerization of ethylene with bis(iminoaryl)pyridyl iron precursor is reviewed, with emphasis on the preparation of polyolefin composites by the in situ polymerization procedure. The catalytic properties are described. The rate of the polymerization is linearly dependent on the concentration of the active catalyst and the ethylene concentration. Bimodal distributions arise depending on the concentration of aluminum alkyls. Aluminum alkyls are chain transfer reagents and give access to polymeryl aluminum compounds that lead to polyethylene with a hydroxyl terminus after oxidation with air. The bis(iminoaryl)pyridyl iron dichloride can be supported on alumina, silica, and magnesium salts to give active catalysts after activation with aluminum alkyls, or vice versa, that are thermally robust. The iron complexes can also be used to prepare polyolefin (nano)composites from ethylene after immobilization on the filler in combination with aluminum alkyls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a.u.:

Arbitrary units

BIR2P:

Bis(iminoaryl)pyridyl with R as the ortho substituent of the iminoaryl moiety

C p :

Number of iron carrying alkyl chains

DIBAL:

Di-isobutyl aluminum hydride

d-MAO:

Dry MAO, MAO liberated from AlMe3

DRIFT:

Diffuse reflectance infrared Fourier transform spectroscopy

EBMAG:

Ethyl butyl magnesium

EtOH:

Ethanol

k p :

Rate constant for ethylene insertion in a iron alkyl bond

MAO:

Methyl aluminoxane as the hydrolysis product of AlMe3

Me:

Methyl substituent

MMAO:

Modified MAO, containing methyl and t-butyl groups

M n :

Number average molecular weight

M w :

Weight average molecular weight

PDI:

Polydispersity index (M w/M n)

SEM:

Scanning electron microscopy

TEAO:

Tetraethyl aluminoxane

TEM:

Transmission electron microscopy

TEOS:

Tetraethoxy silane

TIBA:

Triisobutyl aluminum

TMA:

Trimethyl aluminum

References

  1. Hogan JP, Banks RL (1954) Polymers and production thereof. US Patent 2,825,721

    Google Scholar 

  2. Ziegler K, Breil H, Holzkamp E, Martin H (1953) Polymerization of ethylene. DE Patent 973,626 and (1954) US Patent 3,257,332

    Google Scholar 

  3. McDaniel MP (2009) Review of Phillips chromium catalyst for ethylene polymerisation. In: Hoff R, Mathers RT (eds) Handbook of transition metal catalysts. Wiley, Hoboken

    Google Scholar 

  4. Wu L, Wanke SE (2009) MgCl2-Supported TiCl4 catalysts for production of morphology-controlled polyethylene. In: Hoff R, Mathers RT (eds) Handbook of transition metal catalysts. Wiley, Hoboken

    Google Scholar 

  5. Yan XW, Wang J-D, Yang Y-R (2005) Polyethylene/clay nanocomposite: review of the synthetic routes and material properties. Cailiao Kexue Yu Gongcheng Xuebao 23(1):133–136

    Google Scholar 

  6. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  7. Jones RF (1968) Filled and reinforced polyolefins. J Petrol Sci Eng 24(8):71–74

    CAS  Google Scholar 

  8. Nwabunma D, Tyu W (2008) Polyolefin composites. Wiley, Hoboken

    Google Scholar 

  9. Guo N, DiBenedetto SA, Tewari P, Lanagan MT, Ratner MA, Marks TJ (2010) Nanoparticle, size, shape and interfacial effects on leakage current density, permittivity, and breakdown strength of metal oxide-polyolefin nanocomposites: experiments and theory. Chem Mater 22:1567–1578

    Article  CAS  Google Scholar 

  10. Alexandre M, Dubois P, Jerome R, Gareia-Marti M, Sun T, Garces JM, Millar DM, Kuperman A (1999) Polyolefin nanocomposites. Patent WO 99/47598

    Google Scholar 

  11. Weiss K, Wirth-Pfeifer C, Hofmann M, Botzenhardt S, Lang H, Bruning K, Meichel E (2002) Polymerisation of ethylene or propylene with heterogeneous metallocene catalyst on clay minerals. J Mol Catal A Chem 182(183):143–149

    Article  Google Scholar 

  12. Tudor J, Willington L, O’Hare D, Royan B (1996) Intercalation of catalytically active metal complexes in phyllosilicates and their application as propene polymerisation catalysts. Chem Commun 1996:2031–2032

    Google Scholar 

  13. Sun T, Garces JM (2002) High-performance polypropylene-clay nanocomposites by in-situ polymerization with metallocene/clay catalysts. Adv Mater 14:128–130

    Article  CAS  Google Scholar 

  14. Bergman JS, Chen H, Giannelis EP, Thomas MG, Coates GW (1999) Synthesis and characterization of polyolefin-silicate nanocomposites: a catalyst intercalation and in-situ polymerization approach. Chem Commun 1999:2179–2180

    Google Scholar 

  15. Dubois P, Alexandra M, Jerome R (2003) Polymerization-filled composites and nanocomposites by coordination catalysis. Macromol Symp 194:13–26

    Article  CAS  Google Scholar 

  16. Hlatky GG (2000) Heterogeneous single-site catalysts for olefin polymerization. Chem Rev 1000:1347–1376

    Article  Google Scholar 

  17. Scott S, Peoples B, Rojas R, Tanna A, Shimizu F (2007) Method for forming exfoliated clay-polyolefin nanocomposites. Patent WO 2007/146263

    Google Scholar 

  18. Malpass DB (2009) Commercially available metal alkyls and their use in polyolefin catalysts. In: Hoff R, Mathers RT (eds) Handbook of transition metal catalysts. Wiley, Hoboken

    Google Scholar 

  19. Ishihama Y, Isobe E, Maruyama Y, Sagae T, Suga Y, Uehara Y (1995) Catalyst for polymerizing an olefin and method for polymerizing the olefin. EP Patent 0683180

    Google Scholar 

  20. Guo N, DiBenedetto SA, Kwon D-K, Wang L, Russell MT, Lanagan MT, Facchetti A, Marks TJ (2007) Supported metallocene catalysis for in-situ synthesis of high energy density metal oxide nanocomposites. J Am Chem Soc 129(4):766–767

    Article  CAS  Google Scholar 

  21. Amin SB, Marks TJ (2008) Versatile pathways for in-situ polyolefin functionalization with heteroatoms: catalytic chain transfer. Angew Chem Int Ed Engl 47(11):2006–2025. doi:10.1002/anie.200703310

    Article  CAS  Google Scholar 

  22. Gibson VC, Spitzmesser SK (2003) Advances in non-metallocene olefin polymerization catalysis. Chem Rev 103(1):283–315

    Article  CAS  Google Scholar 

  23. Ittel SD, Johnson LK, Brookhart M (2000) Late transition metal catalysts for ethylene homo and copolymerization. Chem Rev 100:1169–1203

    Article  CAS  Google Scholar 

  24. Edson JB, Dornski GJ, Rose JM, Bolig AD, Brookhart M, Coates GW (2009) Living transition metal-catalyzed alkenen polymerization: polyolefin synthesis and new polymer architectures. In: Müller AHE, Matyjaszewski K (eds) Controlled and living polymerizations. Wiley, Weinheim

    Google Scholar 

  25. Kempe R (2007) How to polymerize ethylene in a highly controlled fashion. Chem Eur J 13:2764–2773

    Article  CAS  Google Scholar 

  26. Arriola DJ, Carnahan EM, Hustad PD, Kuhlman R, Wenzel TT (2006) Catalytic production of olefin block copolymers via chain shuttling polymerization. Science 312:714–719. doi:10.1126/science.1125268

    Article  CAS  Google Scholar 

  27. Quijada R, Rojas R, Bazan GC, Komon ZJA, Mauler RS, Galland GB (2001) Synthesis of branched polyethylene from ethylene by tandem action of iron and zirconium single site catalysts. Macromolecules 34:2411–2417

    Article  CAS  Google Scholar 

  28. Britovsek GJP, Gibson VC, Kimberley BS, Maddox PJ, McTavish SJ, Solan GA, White AJP, Williams DJ (1998) Novel olefin polymerization catalysts based on iron and cobalt. Chem Commun 1998(7):849–850

    Article  Google Scholar 

  29. Small BL, Brookhart M, Bennett AMA (1998) Highly active iron and cobalt catalysts for the polymerization of ethylene. J Am Chem Soc 120(16):4049–4050. doi:10.1021/J11802100s

    Article  CAS  Google Scholar 

  30. Reardon D, Conan F, Gambarotta S, Yap G, Wang Q (1999) Life and death of an active ethylene polymerization catalyst. Ligand involvement in catalyst activation and deactivation. isolation and characterization of two unprecedented neutral and anionic vanadium(I) alkyls. J Am Chem Soc 121:9318–9325. doi:10.1021/j1190263x

    Article  CAS  Google Scholar 

  31. Gibson VC, Redshaw C, Solan GA (2007) Bisiminopyridines: surprisingly reactive ligands and a gateway to new families of catalysts. Chem Rev 107:1745–1776. doi:10.1021/cr068437y

    Article  CAS  Google Scholar 

  32. Cossée P (1964) Ziegler–Natta catalysis. I. Mechanism of polymerization of α-olefins with Ziegler–Natta catalysts. J Catal 3(1):80–88

    Article  Google Scholar 

  33. Talzi EP, Babushkin DE, Semikolenova NV, Zudin VN, Zakharov VA (2001) Ethylene polymerization in the presence of iron(II) 2,6-bis(imine)pyridine complex: structures of key intermediates. Kinet Catal 42(2):147–153

    Article  CAS  Google Scholar 

  34. Bryliakov KP, Talsi EP, Semikolenova NV, Zakharov VA (2009) Formation and nature of the active sites in bis(imino)pyridine iron-based polymerization catalysts. Organometallics 28:3225–3232. doi:10.1021/om8010905

    Article  CAS  Google Scholar 

  35. Wang S, Liu D, Huang R, Zhang Y, Mao B (2006) Studies on the activation and polymerization mechanism of ethylene polymerization catalyzed by bis(imino)pyridyl iron(II) precatalyst with alkylaluminum. J Mol Catal A Chem 245(1–2):122–131. doi:10.1016/j.molcata.2005.09.023

    Article  CAS  Google Scholar 

  36. Hoyt HM, Chirik PJ (2008) Single-component bis(imino)pyridine iron catalyzed olefin polymerization. In: Abstracts of papers, 236th ACS national meeting, INOR-707, Philadelphia

    Google Scholar 

  37. Bouwkamp MW, Lobkovsky E, Chirik PJ (2005) Bis(imino)pyridine iron(II) alkyl cations for olefin polymerization. J Am Chem Soc 127:9660–9966. doi:10.1021/j1524447

    Article  CAS  Google Scholar 

  38. Schmidt R, Das PK, Welch MB, Knudsen RD (2004) N,N,N-Tridentate iron(II) and vanadium(III) complexes, part III, UV–visible spectroscopic studies of reactions of ethylene-oligomerization and polymerization catalysts with methyl aluminoxane cocatalysts. J Mol Catal A Chem 222(1–2):27–45. doi:10.1016/S1381-1169(04)00409-1

    CAS  Google Scholar 

  39. Bianchini C, Giambastiani G, Guerrero IR, Meli A, Passaglia E, Gragnoli T (2004) Simultaneous polymerization and Schulz–Flory oligomerization of ethylene made possible by activation with MAO of a 1-symmetric [2,6-bis(arylimino)pyridyl]iron dichloride precursor. Organometallics 23(26):6087–6089. doi:10.1021/om049313j

    Article  CAS  Google Scholar 

  40. Cruz VL, Ramos J, Martinez-Salazar J, Gutierrez-Oliva S, Toro-Labbe A (2009) A theoretical study on a multicenter model based on different metal oxidation states for the bis(imino)pyridine iron catalysts in ethylene polymerization. Organometallics 28(20):5889–5895. doi:10.1021/om900534w

    Article  CAS  Google Scholar 

  41. Britovsek GJP, Clentsmith GKB, Gibson VC, Goodgame DML, McTavish SJ, Pankhurst QA (2002) The nature of the active site in bis(imino)pyridine iron ethylene polymerization catalysts. Catal Commun 3(5):207–211

    Article  CAS  Google Scholar 

  42. Tondreau AM, Milsmann C, Patrick AD, Hoyt HM, Lobkovsky E, Wieghardt K, Chirik PJ (2010) From synthesis and electronic structure of cationic, neutral and anionic bis(imino)pyridine iron alkyl complexes: evaluation of redox activity in single-component ethylene polymerization catalysts. J Am Chem Soc 132(42):15046–15059

    Article  CAS  Google Scholar 

  43. Kissin YV, Qian CT, Xie GY, Chen YF (2006) Multi-center nature of ethylene polymerization catalysts based on 2,6-bis(imino)-pyridyl complexes of iron and cobalt. J Polym Sci A Polym Chem 44(21):6159–6170

    Article  CAS  Google Scholar 

  44. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  45. Britovsek GJP, Cohen SA, Gibson VC, Maddox PJ, van Meurs M (2002) Iron-catalyzed polyethylene chain growth on zinc: linear alpha-olefins with a Poisson distribution. Angew Chem Int Ed 41(3):489–491

    Article  CAS  Google Scholar 

  46. Barabanov AA, Bukatov GD, Zakharov VA, Semikolenova NV, Echevskaja LG, Matsko MA (2005) Kinetic peculiarities of ethylene polymerization over homogeneous bis(imino)pyridine Fe(II) catalysts with different activators. Macromol Chem Phys 206:2292–2298. doi:10.1002/macp.200500310

    Article  CAS  Google Scholar 

  47. Britovsek GJP, Bruce M, Gibson VC, Kimberley BS, Maddox PJ, Mastroianni S, McTavish SJ, Redshaw C, Solan GA, Stroemberg S, White AJP, Williams DJ (1999) Iron and cobalt ethylene polymerization catalysts bearing 2,6-bis(imino)pyridyl ligands: synthesis, structures and polymerization studies. J Am Chem Soc 121(38):8728–8740

    Article  CAS  Google Scholar 

  48. Mikenas TB, Zakharov VA, Echevskaya LG, Matsko MA (2007) Kinetic features of ethylene polymerization over supported catalysts [2,6-bis(imino)pyridyl iron dichloride/magnesium dichloride] with AlR3 as an activator. J Polym Sci A Polym Chem 45(22):5057–5066. doi:10.1002/pola.22245

    Article  CAS  Google Scholar 

  49. Scholtyssek JS (2012) Entwicklung einer dreistufigen in-situ Synthese von Polyethylen/Silica-Nanocomposites. PhD Thesis, Universität Hamburg

    Google Scholar 

  50. Zhao W, Yu J, Song S, Yang W, Liu H, Hao X, Redshaw C, Sun W-H (2012) Controlling the ethylene polymerization parameters in iron pre-catalysts of the type 2-[1-(2,4-dibenzhydryl-6-methylphenylimino)ethyl]-6-[1-(arylimino) ethyl]pyridyl iron dichloride. Polymer 53:130–137

    Article  CAS  Google Scholar 

  51. Zhang W, Chai W, Sun W-H, Hu X, Redshaw C, Hao X (2012) 2-(1-(Arylimino)ethyl)-8-arylimino-5,6,7-trihydroquinoline iron(II) chloride complexes: synthesis, characterization and ethylene polymerization behavior. Organometallics 31:5039–5048

    Article  CAS  Google Scholar 

  52. Smit TM, Tomov AK, Britovsek GJP, Gibson VC, White AJP, Williams DJ (2012) The effect of imine-crbon substituents in bis(imino)pyridine-based ethylene polymerisation catalysts across the transition series. Catal Sci Technol 2:643–655. doi:10.1039/2CY00448H

    Article  CAS  Google Scholar 

  53. Görl C, Beck N, Kleiber K, Alt HG (2012) Iron(III) complexes with meta-substituted bis(arylimino)pyridine ligands: catalyst precursors for the selective oligomerization of ethylene. J Mol Catal A Chem 352:110–127. doi:10.1016/j.molcata.2011.10.011

    Article  Google Scholar 

  54. Kaul FAR, Puchta GT, Frey GD, Herdtweck E, Herrmann WA (2007) Iminopyridine complexes of 3d metals for ethylene polymerization: comparative structural studies and ligand size controlled chain termination. Organometallics 26(4):988–999

    Article  CAS  Google Scholar 

  55. Luinstra GA, Queisser J, Bildstein B, Görtz HH, Amort C, Malaun M, Krajete A, Werne G, Kristen MO, Huber N, Gernert C (2003) Highly active ethene polymerization catalysts with unusual imine ligands. In: Rieger B, Saunders Baugh L, Kacker S, Strigler S (eds) Late transition metal polymerization catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  56. Britovsek GJP, Gibson VC, Kimberley BS, Mastroianni S, Redshaw C, Solan GA, White AJP, Williams DJ (2001) Bis(imino)pyridyl iron and cobalt complexes: the effect of nitrogen substituents on ethylene oligomerization and polymerization. J Chem Soc Dalton Trans 2001(10):1639–1644

    Google Scholar 

  57. Gibson VC, Solan GA (2009) Iron-based and cobalt-based olefin polymerisation catalysts. In: Guan Z (ed) Topics in organometallic chemistry. Springer, Berlin, doi:10.1007/3418_2008_10

    Google Scholar 

  58. Gibson VC, Solan GA (2010) Olefin oligomerizations and polymerizations catalyzed by iron and cobalt complexes bearing bis(imino)pyridine ligands. In: Bullock RM (ed) Catalysis without precious metals. Wiley-VCH, Weinheim. doi:10.1002/9783527631582.ch5

  59. Kim I, Han BH, Ha Y-S, Ha C-S, Park D-W (2004) Effect of substituent position on the ethylene polymerization by Fe(II) and Co(II) pyridylbis-imine catalysts. Catal Today 93–95:281–285. doi:10.1016/j.cattod.2004.06.057

    Article  Google Scholar 

  60. Wang Q, Li L (2004) Effect of aluminoxane on molecular weight and molecular weight distribution of polyethylene prepared by an iron-based catalyst. Polym Int 53:1473–1478. doi:10.1002/Pi.1565

    Article  CAS  Google Scholar 

  61. Barabanov AA, Bukatov GD, Zakharov VA, Semikolenova NV, Mikenas TB, Echevskaja LG, Matsko MA (2006) Kinetic study of ethylene polymerization over supported bis(imino)pyridine iron (II) catalysts. Macromol Chem Phys 207:1368–1375. doi:10.1002/macp.200600122

    Article  CAS  Google Scholar 

  62. Mahdavi H, Badiei A, Zohuri GH, Rezaee A, Jamjah R, Ahmadjo SJ (2007) Homogeneous polymerization of ethylene using an iron-based metal catalyst system. J Appl Polym Sci 103(3):1517–1522. doi:10.1002/app.24949

    Article  CAS  Google Scholar 

  63. Luinstra GA, Werne G (2001) Highly active single site catalysts with halogenated ligands. In: Abstracts of papers, 221st ACS national meeting, INOR-325, San Diego, 2001

    Google Scholar 

  64. Barabanov AA, Bukatov GD, Zakharov VA (2008) Effect of temperature on the number of active sites and propagation rate constant at ethylene polymerization over supported bis(imino)pyridine iron catalysts. J Polym Sci A Polym Chem 46(19):6621–6629. doi:10.1002/pola.22972

    Article  CAS  Google Scholar 

  65. Small BL, Brookhart M (1999) Polymerization of propylene by a new generation of iron catalysts: mechanisms of chain initiation, propagation, and termination. Macromolecules 31:2120–2130

    Article  Google Scholar 

  66. Kumar KR, Sivaram S (2000) Macromol Chem Phys 201(13):1513–1520

    Article  CAS  Google Scholar 

  67. Semikolenova NV, Zakharov VA, Paukshtis EA, Danilova IG (2005) Supported catalysts based on 2,6-bis(imino)pyridyl complex of Fe(II): DRIFTS study of the catalyst formation and data on ethylene polymerization. Top Catal 32(1–2):77–82. doi:10.1007/s11244-005- 9262-3

    Article  CAS  Google Scholar 

  68. Ray S, Sivaram S (2006) Silica-supported bis(imino)pyridyl iron(II) catalyst: nature of the support–catalyst interactions. Polym Int 55:854–861. doi:10.1002/pi.2020

    Article  CAS  Google Scholar 

  69. Ma Z, Sun W-H, Zhu N, Li Z, Shao C, Hu Y (2002) Preparation of silica-supported late transition metal catalyst and ethylene polymerization. Polym Int 51:349–352. doi:10.1002/pi.853

    Article  CAS  Google Scholar 

  70. Li L, Wang Q (2004) Synthesis of polyethylene with bimodal molecular weight distribution by supported iron based catalyst. J Polym Sci A Polym Chem 42:5662–5669

    Article  CAS  Google Scholar 

  71. Kaul FAR, Puchta GT, Schneider H, Bielert F, Mihalios D, Herrmann WA (2002) Immobilization of bis(imino)pyridyliron(II) complexes on silica. Organometallics 21:74–82

    Article  CAS  Google Scholar 

  72. Trewyn BG, Slowing II, Giri S, Chen H-T, Lin VS-Y (2007) Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release. Acc Chem Res 40(9):846–853

    Article  CAS  Google Scholar 

  73. Ma Z, Ke Y, Wang H, Guo C, Zhang M, Sun W-H, Hu Y (2003) Ethylene polymerization with a silica-supported iron-based diimine catalyst. J Appl Polym Sci 88(2):466–469. doi:10.1002/app.11749

    Article  CAS  Google Scholar 

  74. Kageyama K, Tamazawa J, Aida T (1999) Extrusion polymerization: catalyzed synthesis of crystalline linear polyethylene nanofibers within a mesoporous silica. Science 285:2113–2115. doi:10.1126/science.285.5436.2113

    Article  CAS  Google Scholar 

  75. Wu L, Wanke SE (2010) MgCl2-Supported TiCl4 catalysts for productions of morphology-controlled polyethylene. In: Hoff R, Mathers RT (eds) Handbook of transition metal polymerization catalysts. Wiley, Hoboken

    Google Scholar 

  76. Ohnishi R, Konakazawa T, Amano J, Fujimura T (2006) Temperature effect on ethylene polymerization with a catalyst prepared by mixing Mg(C2H5)(n-C4H9), Al(2H5)1.5Cl1.5 and iron(II)bis(imino)pyridyl complex. Polym Bull 56(1):1–8. doi:10.1007/s00289-005-0460-8

    Article  CAS  Google Scholar 

  77. Xu R, Liu D, Wang S, Mao B (2006) Preparation of spherical MgCl2-supported late-transition metal catalysts for ethylene polymerization. Macromol Chem Phys 207:779–786. doi:10.1002/macp.200500582

    Article  CAS  Google Scholar 

  78. Schilling M, Bal R, Görl C, Alt HG (2007) Heterogeneous catalyst mixtures for the polymerization of ethylene. Polymer 48:7461–7475. doi:10.1016/j.polymer.2007. 10.042

    Article  CAS  Google Scholar 

  79. Kaminsky W, Funck A, Scharlach K (2010) In situ generation of polyolefin nanocomposites. In Sabu T (ed) Recent advances in polymer nanocomposites: synthesis and characterisation. Brill, Leiden, pp 49–73. doi:10.1163/ej.9789004172975.i-438.19

  80. Kurokawa H, Matsuda M, Fujii K, Ishihama Y, Sakuragi T, Ohshima M, Miura H (2007) Bis(imino)pyridine iron and cobalt complexes immobilized into interlayer space of fluorotetrasilicic mica: highly active heterogeneous catalysts for polymerization of ethylene. Chem Lett 36:8. doi:10.1246/cl.2007.1004

    Article  Google Scholar 

  81. Hiyama Y, Kawada Y, Ishihama Y, Sakuragi T, Ohshima M, Kurokawa H, Miura H (2009) Catalytic behavior of bis(imino)pyrindine iron(II) complex supported on clay minerals during slurry polymerization of ethylene. Bull Chem Soc Jpn 82(5):624–626

    Article  CAS  Google Scholar 

  82. Kondo T, Yamamoto K, Sakuragi T, Kurokawa H, Miura H (2012) Acetyliminopyridineiron(III) complexes immobilized in fluorotetrasilicic mica interlayer as efficient catalysts for oligomerization of ethylene. Chem Lett 41:461–463. doi:10.1246/cl.2012.461

    Article  CAS  Google Scholar 

  83. Ray S, Galgali G, Lele A, Sivaram S (2005) In situ polymerization of ethylene with bis(imino)pyridine iron(II) catalysts supported on clay: the synthesis and characterization of polyethylene–clay nanocomposites. J Polym Sci A Polym Chem 43:304–318

    Article  CAS  Google Scholar 

  84. Stoeber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69

    Article  CAS  Google Scholar 

  85. Yun DS, Kim HJ, Yoo JW (2005) Preparation of silica nanospheres: effect of silicon alkoxide and alcohol on silica nanospheres. Bull Korean Chem Soc 26(12):1927–1928

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerrit A. Luinstra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meyer, R.S.A., Luinstra, G.A. (2013). Iron Catalyst in the Preparation of Polyolefin Composites. In: Kaminsky, W. (eds) Polyolefins: 50 years after Ziegler and Natta II. Advances in Polymer Science, vol 258. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2013_223

Download citation

Publish with us

Policies and ethics