Skip to main content

Modeling of Suspension Vinyl Chloride Polymerization: From Kinetics to Particle Size Distribution and PVC Grain Morphology

  • Chapter
  • First Online:
Polymer Reaction Engineering of Dispersed Systems

Part of the book series: Advances in Polymer Science ((POLYMER,volume 280))

Abstract

A comprehensive multiscale, multiphase modeling approach is developed to describe the dynamic evolution of polymerization rate, average molecular weight, and morphological properties of poly(vinyl chloride) (PVC) produced in batch suspension polymerization reactors. Dynamic evolution of the molecular (molecular weight distribution, long chain branching, short chain branching, terminal double bonds) and morphological (particle size distribution, grain porosity) properties of PVC can be calculated from the numerical solution of the proposed integrated model. In particular, polymer molecular properties are determined by employing a detailed kinetic mechanism that describes the free-radical polymerization of vinyl chloride monomer in both monomer- and polymer-rich phases. The initial monomer droplet size distribution and final polymer particle size distribution depend on the type and concentration of the surface-active agents, the quality of agitation (reactor geometry, impeller type, power input, etc.) and the physical properties (density, viscosity, interfacial tension, etc.) of the continuous and dispersed phases. A dynamic discretized particle population balance equation (PBE) is numerically solved to calculate the dynamic evolution of the particle size distribution of the produced PVC in a batch suspension reactor. Furthermore, the primary particle size distribution inside the polymerizing monomer droplets, which affects the porosity of the final PVC grains, is determined from the solution of a PBE governing the nucleation, growth, and aggregation of primary particles inside the polymerizing monomer droplets. Theoretical model predictions are compared successfully with a comprehensive series of experimental data on polymerization kinetics, particle size distribution, and PVC grain morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

DH:

Degree of hydrolysis

DSD:

Droplet size distribution

HCl:

Hydrogen chloride

HPMC:

Hydroxypropyl methylcellulose

LCB:

Long chain branch

LP40:

Lauroyl peroxide

LUP610:

3-Hydroxy-1,1-dimethylbutyl peroxyneodecanoate

PBE:

Population balance equation

PDEH:

Di (2-ethylhexyl) peroxydicarbonate

PPSD:

Primary particle size distribution

PSD:

Particle size distribution

PVA:

Poly(vinyl alcohol)

PVC:

Poly(vinyl chloride)

SCB:

Short chain branch

SEM:

Scanning electron microscope

TDB:

Terminal double bond

TNCLD:

Total number chain length distribution

VCM:

Vinyl chloride monomer

References

  1. Smallwood PV (1990) Vinyl chloride polymers, polymerization. In: Mark H (ed) Encyclopedia of polymer science and technology, vol 17. Wiley, New York, p. 295

    Google Scholar 

  2. Saeki Y, Emura T (2002) Technical progresses for PVC production. Prog Polym Sci 27:2055

    CAS  Google Scholar 

  3. Burgess RH (1982) Manufacturing and processing of PVC. Applied Science, London

    Google Scholar 

  4. Langsam M (1986) In: Nass LI, Heiberger CA (eds) Encyclopedia of PVC, vol 1, 2nd edn. Marcel Dekker, New York, p. 48

    Google Scholar 

  5. Tornell BE (1988) Recent developments in PVC polymerization. Polym-Plast Technol Eng 27:1

    Google Scholar 

  6. Xie TY, Hamielec AE, Wood PE, Woods DR (1991) Suspension, bulk and emulsion polymerization of vinyl chloride–mechanism, kinetics and modelling. J Vinyl Technol 13(1):2

    Google Scholar 

  7. Xie TY, Hamielec AE, Wood PE, Woods DR (1991) Experimental investigation of vinyl chloride polymerization at high conversion: mechanism, kinetics and modelling. Polymer 32(3):537

    CAS  Google Scholar 

  8. Darvishi R, Esfahany MN, Bagheri R (2015) S-PVC grain morphology: a review. Ind Eng Chem Res 54(44):10953–10963

    CAS  Google Scholar 

  9. Mejdell T, Pettersen T, Naustdal C, Svendsen HF (1999) Modelling of industrial S-PVC reactor. Chem Eng Sci 54:2459

    CAS  Google Scholar 

  10. Sidiropoulou E, Kiparissides C (1990) Mathematical modelling of PVC suspension polymerization. J Makromol Sci Chem A27(3):257

    CAS  Google Scholar 

  11. Abdel-Alim AH, Hamielec AE (1972) Bulk polymerization of vinyl chloride. J Appl Polym Sci 16:783

    CAS  Google Scholar 

  12. Kuchanov SI, Bort GC (1973) Kinetics and mechanism of polymerization of vinyl chloride. Polym Sci A15:2712

    Google Scholar 

  13. Ray WH, Jain SK, Salovey R (1975) On the modelling of bulk PVC reactors. J Appl Polym Sci 19:1297

    CAS  Google Scholar 

  14. Ugelstad J, Moerk PC, Hansen FK, Kaggerund KH, Ellingsen T (1981) Kinetics and mechanism of vinyl chloride polymerization. Pure Appl Chem 53:323

    CAS  Google Scholar 

  15. Chan RKS, Langsam M, Hamielec AE (1982) Calculation and applications of VCM distribution in vapor/water/solid phase during VCM polymerization. J Macromol Sci Chem A17(6):969

    CAS  Google Scholar 

  16. Hamielec AE, Gomez-Vaillard R, Marten FL (1982) Diffusion controlled free radical polymerization. Effect on polymerization rate and molecular properties of PVC. J Macromol Sci Chem A17(6):1005

    CAS  Google Scholar 

  17. Kelsall DG, Maitland GC (1983) The interaction of process conditions and product properties for PVC. Munich, Polymer Reaction Engineering. Technical University of Berlin, Berlin, pp. 131–152

    Google Scholar 

  18. Weickert G, Henschel G, Weissenborn KD (1987) Kinetik der VC polymerisation. Angew Makromol Chem 147:1

    CAS  Google Scholar 

  19. Weickert G, Henschel G, Weissenborn KD (1987) Kinetik der VC polymerisation. Angew Makromol Chem 147:19

    CAS  Google Scholar 

  20. Xie TY, Hamielec AE, Wood PE, Woods DR (1991) Experimental investigation of vinyl chloride polymerization at high conversion: reactor dynamics. J Appl Polym Sci 43:1259

    CAS  Google Scholar 

  21. Dimian A, Van Diepen D, Van der Wal GA (1995) Dynamic simulation of a PVC suspension reactor. Comput Chem Eng 19S:S427

    Google Scholar 

  22. Lewin DR (1996) Modelling and control of an industrial PVC suspension polymerization reactor. Comput Chem Eng 20:S865

    CAS  Google Scholar 

  23. Kiparissides C, Daskalakis G, Achilias DS, Sidiropoulou E (1997) Dynamic simulation of industrial poly(vinyl chloride) batch suspension polymerization reactors. Ind Eng Chem Res 36:1253

    CAS  Google Scholar 

  24. Krallis A, Kotoulas C, Papadopoulos S, Kiparissides C, Bousquet J, Bonardi C (2004) A comprehensive kinetic model for the free-radical polymerization of vinyl chloride in the presence of monofunctional and bifunctional initiators. Ind Eng Chem Res 43:6382

    CAS  Google Scholar 

  25. Kotoulas C, Kiparissides C (2006) A generalized population balance model for the prediction of particle size distribution in suspension polymerization reactors. Chem Eng Sci 61:332

    CAS  Google Scholar 

  26. Alexopoulos A, Kiparissides C (2007) On the prediction of internal particle morphology in suspension polymerization of vinyl chloride. Part I: the effect of primary particle size distribution. Chem Eng Sci 62:3970

    CAS  Google Scholar 

  27. Starnes Jr WH, Zaikov VC, Chung HT, Wojciechowski BJ, Tran HV, Saylor K (1998) Intramolecular hydrogen transfers in vinyl chloride polymerization: routes to doubly branched structures and internal double bonds. Macromolecules 31:1508

    CAS  Google Scholar 

  28. Starnes Jr WH (2002) Structural and mechanistic aspects of the thermal degradation of poly(vinyl chloride). Prog Polym Sci 27:2133

    CAS  Google Scholar 

  29. Van Cauter K, Van Den Bossche BJ, Van Speybroeck V, Waroquier M (2007) Ab initio study of free-radical polymerization: defect structures in poly(vinyl chloride). Macromolecules 40:1321–1331

    Google Scholar 

  30. Van Cauter K, Van Speybroeck V, Waroquier M (2007) Ab initio study of poly(vinyl chloride) propagation kinetics: head-to-head versus head-to-tail additions. Chem Phys Chem 8:541–552

    PubMed  Google Scholar 

  31. Wieme J, Marin GB, Reyniers M-F (2007) Modelling the formation of structural defects during the suspension polymerization of vinyl chloride. Chem Eng Sci 62:5300–5303

    CAS  Google Scholar 

  32. Wieme J, D’hooge DR, Reyniers M-F, Marin GB (2009) Importance of radical transfer in precipitation polymerization: the case of vinyl chloride suspension polymerization. Macromol React Eng 3:16–35

    CAS  Google Scholar 

  33. De Roo T, Wieme J, Heynderickx GJ, Marin GB (2005) Estimation of intrinsic rate coefficients in vinyl chloride suspension polymerization. Polymer 46:8340–8354

    Google Scholar 

  34. Dos Santos FN, Horiuchib LN, Pereira PAP (2014) Development of a method for the identification of organic contaminants in vinyl chloride monomer (VCM) by TD-GC-MS and multivariate analysis. Anal Methods 6:8946–8955

    CAS  Google Scholar 

  35. Achilias D, Kiparissides C (1992) Toward the development of a general framework for modeling molecular weight and compositional changes in free radical copolymerization reactions. J Macromol Sci Part C: Polym Rev C32:183–234

    CAS  Google Scholar 

  36. Mastan E, Zhu S (2015) Method of moments: a versatile tool for deterministic modeling of polymerization kinetics. Eur Polym J 68:139–160

    CAS  Google Scholar 

  37. D’hooge DR, Van Steenbergea PHM, Reyniersa MF, Marin GB (2016) The strength of multi-scale modeling to unveil the complexity of radical polymerization. Prog Polym Sci 58:59–89

    Google Scholar 

  38. Baltsas A, Achilias D, Kiparissides C (1996) A theoretical investigation of the production of branched copolymers in continuous stirred tank reactors. Macromol Theory Simul 5:477–497

    CAS  Google Scholar 

  39. Xie TY, Hamielec AE, Wood PE, Woods DR (1987) Experimental investigation of vinyl chloride polymerization at high conversion-temperature/pressure/conversion and monomer phase distribution relationships. J Appl Polym Sci 34:1749–1766

    CAS  Google Scholar 

  40. Achilias D, Kiparissides C (1992) Development of a general mathematical framework for modelling diffusion-controlled free radical polymerization reactions. Macromolecules 25:3739–3750

    CAS  Google Scholar 

  41. De Roo T, Heynderickx GJ, Marin GB (2004) Diffusion-controlled reactions in vinyl chloride suspension polymerization. Macromol Symp 206:215–228

    Google Scholar 

  42. Wieme J, Reyniers M-F, Marin GB (2009) Initiator efficiency modeling for vinyl chloride suspension polymerization. Chem Eng J 154:203–210

    CAS  Google Scholar 

  43. Allsopp MW (1982) In: Burgess RH (ed) Manufacture and processing of PVC. Applied Science Publishers, London

    Google Scholar 

  44. Allsopp MW, Vianello G (1992) Poly(vinyl chloride). In: Ullmann’s encyclopedia of industrial chemistry, vol A21. Wiley-VCH, New York, pp. 717–742

    Google Scholar 

  45. Yuan HG, Kalfas G, Ray WH (1991) Suspension polymerization. J Macromol Sci Part C: Polym Rev C31:215–299

    CAS  Google Scholar 

  46. Brooks BW (2010) Suspension polymerization processes. Chem Eng Technol 33(11):1737–1744

    CAS  Google Scholar 

  47. Bárkányi A, Németh S, Lakatos BG (2013) Modelling and simulation of suspension polymerization of vinyl chloride via population balance model. Comput Chem Eng 59:211–218

    Google Scholar 

  48. Chatzi EG, Kiparissides C (1992) Dynamic simulation of bimodal drop size distributions in low coalescence batch dispersion systems. Chem Eng Sci 47:445–456

    CAS  Google Scholar 

  49. Chatzi EG, Boutris CJ, Kiparissides C (1991) On-line monitoring of drop size distributions in agitated vessels. 1. Effects of temperature and impeller speed. Ind Eng Chem Res 30:536–543

    CAS  Google Scholar 

  50. Hartland S (1968) The coalescence of a liquid drop at a liquid-liquid interface. Part V: the effect of surface active agent. Trans Inst Chem Eng (London) 46:T275

    CAS  Google Scholar 

  51. Hamielec AE, Tobita H (1992) Polymerization processes. In: Ullmann’s encyclopedia of industrial chemistry, vol A21. Wiley-VCH, New York, pp. 305–428

    Google Scholar 

  52. Chatzi EG, Kiparissides C (1994) Drop size distributions in high holdup fraction suspension polymerization reactors: effect of the degree of hydrolysis of PVA stabilizer. Chem Eng Sci 49:5039–5052

    CAS  Google Scholar 

  53. Cheng JT, Langsam M (1985) Particle structure of PVC based on cellulosic suspension system. III. Effect of monomer refluxing. J Appl Polym Sci 30:1365–1378

    CAS  Google Scholar 

  54. Cebollada AF, Schmidt MJ, Farber JN, Cariati NJ, Valles EM (1989) Suspension polymerization of vinyl chloride. I. Influence of viscosity of suspension medium on resin properties. J Appl Polym Sci 37:145–166

    CAS  Google Scholar 

  55. Chatzi EG, Kiparissides C (1995) Steady state drop size distribution in high holdup fraction dispersion systems. AICHE J 41:1640–1652

    CAS  Google Scholar 

  56. Nilsson H, Silvegren C, Tornell B (1985) Suspension stabilizers for PVC production. I. Interfacial tension measurements. J Vinyl Technol 7(3):112–118

    CAS  Google Scholar 

  57. Lankveld JM, Lyklema J (1972) Adsorption of polyvinyl alcohol on the paraffin-water interface: I. Interfacial tension as a function of time and concentration. J Colloid Interface Sci 41:454–462

    CAS  Google Scholar 

  58. Maggioris D, Goulas A, Alexopoulos AH, Chatzi EG, Kiparissides C (2000) Prediction of particle size distribution in suspension polymerization reactors: effect of turbulence nonhomogeneity. Chem Eng Sci 55:4611–4627

    CAS  Google Scholar 

  59. Kiparissides C, Achilias DS, Chatzi E (1994) Dynamic simulation of primary particle-size distribution in vinyl chloride polymerization. J Appl Polym Sci 54:1423–1438

    CAS  Google Scholar 

  60. Kumar S, Ramkrishna D (1996) On the solution of population balance equations by discretization–I. A fixed pivot technique. Chem Eng Sci 51:1311–1332

    CAS  Google Scholar 

  61. Shinnar R, Church JM (1960) Predicting particle size in agitated dispersions. Ind Eng Chem 52:253–256

    CAS  Google Scholar 

  62. Hinze JO (1955) Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AICHE J 1:289–295

    CAS  Google Scholar 

  63. Narsimhan G, Gupta G, Ramkrishna D (1979) A model for translational breakage probability of droplets in agitated lean liquid-liquid dispersions. Chem Eng Sci 34:257–265

    CAS  Google Scholar 

  64. Ward JP, Knudsen JG (1967) Turbulent flow of unstable liquid-liquid dispersions: drop sizes velocity distributions. AICHE J 13:356–367

    CAS  Google Scholar 

  65. Chen HT, Middleman S (1967) Drop size distribution in agitated liquid-liquid systems. AICHE J 13:989–996

    CAS  Google Scholar 

  66. Doulah MS (1975) An effect of hold-up on drop sizes in liquid-liquid dispersions. Ind Eng Chem Fundam 14(2):137–138

    CAS  Google Scholar 

  67. Coulaloglou CA, Tavlarides LL (1977) Description of interaction processes in agitated liquid-liquid dispersions. Chem Eng Sci 32:1289–1297

    CAS  Google Scholar 

  68. Wang CY, Calcabrese RV (1986) Drop breakup in trurbulent stirred-tank contactors. Part II: relative influence of viscosity and interfacial tension. AICHE J 32(4):667–676

    CAS  Google Scholar 

  69. Calabrese RV, Chang TPK, Dang PT (1986) Drop breakup in turbulent stirred-tank contactors. Part I: effect of dispersed phase viscosity. AICHE J 32:657–666

    CAS  Google Scholar 

  70. Lagisetty JS, Das PK, Kumar R, Gandhi KS (1986) Breakage of viscous and non-Newtonian drops in stirred dispersions. Chem Eng Sci 41:65–71

    CAS  Google Scholar 

  71. Laso M, Steiner L, Hartland S (1987) Dynamic simulation of agitated liquid-liquid disperions–II experimental determination of breakage and coalescence rates in a stirred tank. Chem Eng Sci 42:2437–2446

    CAS  Google Scholar 

  72. Chatzi EG, Gavrielides A, Kiparissides C (1989) Generalized model for prediction of the steady-state drop size distributions in batch stirred vessels. Ind Eng Chem Res 28:1704

    CAS  Google Scholar 

  73. Chatzi EG, Boutris CJ, Kiparissides C (1991) On-line monitoring of drop size distribution in agitated vessels. 2. Effect of stabilizer concentration. Ind Eng Chem Res 29:1307–1316

    Google Scholar 

  74. Zerfa M, Brooks BW (1996) Vinyl chloride dispersion with relation to suspension polymerization. Chem Eng Sci 51(14):3591–3611

    CAS  Google Scholar 

  75. Vivaldo-Lima E, Wood PE, Hamielec AE (1997) An updated review on suspension polymerization. Ind Eng Chem Res 36:939–965

    CAS  Google Scholar 

  76. Shinnar R (1961) On the behaviour of liquid dispersions in mixing vessels. J Fluid Mech 10:259–271

    Google Scholar 

  77. Arai K, Konno M, Matunaga Y, Saito S (1977) Effect of dispersed-phase viscosity on the maximum stable drop size for breakup in turbulent flow. J Chem Eng Jpn 10:325–239

    CAS  Google Scholar 

  78. Alvarez J, Alvarez J, Hernandez M (1994) A population balance approach for the description of particle size distribution in suspension polymerization reactors. Chem Eng Sci 49:99–113

    CAS  Google Scholar 

  79. Tsouris C, Tavlarides LL (1994) Breakage and coalescence models for drops in turbulent dispersions. AICHE J 40(3):395–406

    CAS  Google Scholar 

  80. Sathyagal AN, Ramkrishna D, Narshimhan G (1996) Droplet breakage in stirred dispersions. Breakage functions from experimental drop-size distributions. Chem Eng Sci 51(9):1377–1391

    CAS  Google Scholar 

  81. Chen Z, Pruss J, Warnacke H-J (1998) A population balance models for disperse systems: drop size distribution in emulsion. Chem Eng Sci 53(5):1059–1066

    CAS  Google Scholar 

  82. Kotoulas C, Kiparissides C (2007) Suspension polymerization. In: Asua JM (ed) Polymer reaction engineering. Blackwell, Oxford, pp. 209–230

    Google Scholar 

  83. Howarth WJ (1964) Coalescence of drops in a turbulent flow field. Chem Eng Sci 19:33–42

    CAS  Google Scholar 

  84. Delichatsios MA, Probstein RF (1976) The effect of coalescence on the average drop size in liquid-liquid dispersions. Ind Eng Chem Fundam 15:134–138

    CAS  Google Scholar 

  85. Sovova H (1981) Breakage and coalescence of drops in a batch stirred vessel. II. Comparison of model and experiments. Chem Eng Sci 36:1567–1573

    CAS  Google Scholar 

  86. Muralidhar R, Ramkrishna D (1986) Analysis of droplet coalescence in turbulent liquid-liquid dispersions. Ind Eng Chem Fundam 25:554–560

    CAS  Google Scholar 

  87. Muralidhar R, Ramkrishna D, Das PK, Kumar R (1988) Coalescence of rigid droplets in a stirred dispersion—II. Comparison of model and experiments. Chem Eng Sci 43:1559–1568

    CAS  Google Scholar 

  88. Kumar S, Kumar R, Gandhi KS (1993) A new model for coalescence efficiency of drops in stirred dispersions. Chem Eng Sci 48(11):2025–2038

    CAS  Google Scholar 

  89. Calabrese RV, Pacek AW, Nienow AW (1993) Coalescence of viscous drops in a stirred dispersion. In: The 1993 ICHEME research event. Institute of Chemical Engineers, London, pp. 642–645

    Google Scholar 

  90. Liu S, Li D (1999) Drop coalescence in turbulent dispersions. Chem Eng Sci 54:5667–5675

    CAS  Google Scholar 

  91. Bouyatiotis BA, Thornton JD (1967) Liquid-liquid extraction studies in stirred tanks. Part I. Droplet size and hold-up measurements in a seven-inch diameter baffled vessel. Instit Chem Eng (London) Symp Ser 26:43–51

    Google Scholar 

  92. Vermeulen T, Williams GM, Langlois GE (1995) Interfacial area in liquid-liquid and gas-liquid agitation. Chem Eng Prog 51:85F

    Google Scholar 

  93. Krieger IM (1972) Rheology of monodispersed lattices. Adv Colloid Interf Sci 3:111–136

    CAS  Google Scholar 

  94. Okaya T (1992) General properties of polyvinyl alcohol in relation to its applications. In: Finch CA (ed) Polyvinyl alcohol developments. Wiley, London

    Google Scholar 

  95. Defay R, Prigogine I, Bellemans A, Everett DH (1966) Surface tension and adsorption. Wiley, New York

    Google Scholar 

  96. Siow KS, Patterson D (1973) Surface thermodynamics of polymer solutions. J Phys Chem 77(3):356–368

    CAS  Google Scholar 

  97. Kiparissides C, Alexopoulos A, Roussos A, Dompazis G, Kotoulas C (2004) Population balance modelling of particulate polymerization processes. Ind Eng Chem Res 43:7290–7302

    CAS  Google Scholar 

  98. Hidy GM (1965) On the theory of the coagulation of noninteracting particles in Brownian motion. J Colloid Sci 20:123–144

    CAS  Google Scholar 

  99. Marchal P, David R, Klein JP, Villermaux J (1988) Crystallization and precipitation engineering-I. An efficient method for solving population balance in crystallization with agglomeration. Chem Eng Sci 43(1):59–67

    CAS  Google Scholar 

  100. Batterham RJ, Hall JS, Barton G (1981) Pelletizing kinetics and simulation for full-scale balling circuits. In: Proceedings 3rd International Symposium on aggregation, Nurnberg, W. Germany. A136

    Google Scholar 

  101. Hounslow MJ, Ryall RL, Marshall VR (1988) Discretized population balance for nucleation, growth, and aggregation. AICHE J 34(11):1821–1832

    CAS  Google Scholar 

  102. Kumar S, Ramkrishna D (1996) On the solution of population balance equations by discretization-II. A moving pivot technique. Chem Eng Sci 51(8):1333–1342

    CAS  Google Scholar 

  103. Bleck R (1970) A fast, approximate method for integrating the stochastic coalescence equation. J Geophys Res 75:5165–5171

    Google Scholar 

  104. Gelbard F, Seinfeld JH (1980) Simulation of multicomponent aerosol dynamics. J Colloid Interface Sci 78(2):485–501

    CAS  Google Scholar 

  105. Sastry KVS, Gaschignard P (1981) Discretization procedure for the coalescence equation of particulate processes. Ind Eng Chem Fundam 20:355–361

    CAS  Google Scholar 

  106. Gelbard F, Seinfeld JH (1979) Exact solution of the general dynamic equation for aerosol growth by condensation. J Colloid Interface Sci 68(1):173–183

    CAS  Google Scholar 

  107. Nicmanis M, Hounslow MJ (1998) Finite-element methods for steady-state population balance equations. AICHE J 44:2258–2272

    CAS  Google Scholar 

  108. Chen M-Q, Hwang C, Shih Y-P (1996) A wavelet-Galerkin method for solving population balance equations. Comput Chem Eng 20(2):131–145

    CAS  Google Scholar 

  109. Ramkrishna D (1985) The status of population balances. Rev Chem Eng 3(1):49–95

    CAS  Google Scholar 

  110. Dafniotis P (1996) Modelling of emulsion copolymerization reactors operating below the critical micelle concentration. PhD thesis, University of Wisconsin-Madison

    Google Scholar 

  111. Alexopoulos AH, Roussos AI, Kiparissides C (2004) Part I: dynamic evolution of the particle size distribution in particulate processes undergoing combined particle growth and aggregation. Chem Eng Sci 59:5751–5769

    CAS  Google Scholar 

  112. Alexopoulos AH, Kiparissides C (2005) Part II: dynamic evolution of the particle size distribution in particulate processes undergoing simultaneous particle nucleation, growth and aggregation. Chem Eng Sci 60:4157–4169

    CAS  Google Scholar 

  113. Roussos AI, Alexopoulos AH, Kiparissides C (2005) Part III: dynamic evolution of the particle size distribution in batch and continuous particulate processes: a Galerkin on finite elements approach. Chem Eng Sci 60:6998–7010

    CAS  Google Scholar 

  114. Meimaroglou D, Roussos AI, Kiparissides C (2006) Part IV: dynamic evolution of the particle size distribution in particulate processes. A comparative study between Monte Carlo and the generalized method of moments. Chem Eng Sci 61:5620–5635

    CAS  Google Scholar 

  115. Johnson GR (1980) Effects of agitation during VCM suspension polymerization. J Vinyl Technol 2:138–140

    CAS  Google Scholar 

  116. Etesami N, Nasr Esfahany M, Bagheri R (2008) Effect of the phase ratio on the particle properties of poly(vinyl chloride) resins produced by suspension polymerization. J Appl Polym Sci 110:2748–2755

    CAS  Google Scholar 

  117. Etesami N, Nasr Esfahany M, Bagheri R (2010) Experimental study of the effect of reflux rate during suspension polymerization on particle properties of PVC resin. Ind Eng Chem Res 49:1997–2002

    CAS  Google Scholar 

  118. Etesami N, Nasr Esfahany M, Bagheri R (2010) Investigation of the effect of delayed reflux on PVC grain properties produced by suspension polymerization. J Appl Polym Sci 117:2506–2514

    CAS  Google Scholar 

  119. Alexopoulos AH, Maggioris D, Kiparissides C (2002) CFD analysis of turbulence non-homogeneity in mixing vessels. A two-compartment model. Chem Eng Sci 57:1735–1752

    CAS  Google Scholar 

  120. Oldshue JY (1983) Fluid mixing technology. McGraw-Hill, New York

    Google Scholar 

  121. Okufi S, Perez de Ortiz ES, Sawistowski H (1990) Scale-up of liquid-liquid dispersions in stirred tanks. Can J Chem Eng 68:400–406

    CAS  Google Scholar 

  122. Scully DB (1976) Scale-up in suspension polymerization. J Appl Polym Sci 20:2299–2303

    CAS  Google Scholar 

  123. Lewis MH, Johnson GR (1981) Agitation scale-up effects during VCM suspension polymerization. J Vinyl Technol 3(2):102–106

    CAS  Google Scholar 

  124. Ozkaya N, Erbay E, Bilgic T, Savasci T (1993) Agitation scale-up model for suspension polymerization of vinyl chloride. Angew Makromol Chem 211:35–51

    CAS  Google Scholar 

  125. Tregan R, Bonnemayre A (1970) Rev Plast Mod 23:7

    Google Scholar 

  126. Smallwood PV (1986) The formation of grains of suspension poly(vinyl chloride). Polymer 27:1609–1618

    CAS  Google Scholar 

  127. Davidson JA, Witenhafer DE (1980) Particle structure of suspension poly(vinyl chloride) and its origin in the polymerization process. J Appl Polym Sci Polym Phys Ed 18:51–69

    CAS  Google Scholar 

  128. Nilsson H, Norvitt T, Silvegren C, Tornell B (1985) Suspension stabilizers for PVC production II: drop size distribution. J Vinyl Technol 7(3):119–122

    CAS  Google Scholar 

  129. Allsopp MW (1981) The development of suspension PVC morphology. Pure Appl Chem 53:449–465

    CAS  Google Scholar 

  130. Marquez EF, Lagos LL (2004) Mathematical modeling of the porosity of suspension poly(vinyl chloride). AICHE J 50:3184–3194

    CAS  Google Scholar 

  131. Tornell BE, Uustalu JM (1982) The influence of additives on the primary particle nucleation and agglomeration in poly(vinyl-chloride). J Vinyl Technol 4(2):53–56

    Google Scholar 

  132. Geil PH (1977) Polymer morphology. J Macromol Sci Chem A11(7):1271–1280

    CAS  Google Scholar 

  133. Ravey M (1977) Mechanism of scale formation in PVC reactors. J Appl Polym Sci 21:839–840

    CAS  Google Scholar 

  134. Willmouth FM, Rance DG, Henman KM (1984) An investigation of precipitation polymerization in liquid vinyl chloride by photon correlation spectroscopy. Polymer 25:1185–1192

    CAS  Google Scholar 

  135. Tornell BE, Uustalu JM (1988) Formation of primary particles in vinyl chloride polymerization. J Appl Polym Sci 35:63–74

    Google Scholar 

  136. Tornell BE, Uustalu JM (1986) Primary particle stability in bulk polymerization of vinyl chloride at high ion strength. Polymer 27:250–252

    Google Scholar 

  137. Tornell BE, Uustalu JM, Jonsson B (1986) Colloidal stability of PVC primary particles in vinyl chloride. Colloid Polym Sci 264:439–444

    Google Scholar 

  138. Rance DG, Zichy EL (1981) The life-cycle of the two-phase system in vinyl chloride polymerization. Pure Appl Chem 53:377–384

    CAS  Google Scholar 

  139. Wilson JC, Zichy EL (1979) Observations of charge on nascent poly(vinyl chloride) particles in monomer. Polymer 20(2):264–265

    CAS  Google Scholar 

  140. Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Dover, New York

    Google Scholar 

  141. Boissel J, Fischer N (1977) Bulk polymerization of vinyl chloride: nucleation phase. Macromol Sci Chem A11(7):1249–1269

    CAS  Google Scholar 

  142. Kiparissides C, Moustakis I, Hamielec A (1993) Electrostatic and steric stabilization of PVC particles. J Appl Polym Sci 49:445–459

    CAS  Google Scholar 

  143. Ramkrishna D (2000) Population balances: theory and applications to particulate systems in engineering. Academic, San Diego

    Google Scholar 

  144. Kiparissides C (1990) Prediction of the primary particle size distribution in vinyl chloride polymerization. Macromol Chem Macromol Symp 35(36):171–192

    Google Scholar 

  145. Talamini G, Visentini A, Kerr J (1998) Bulk and suspension polymerization of vinyl chloride: the two-phase model. Polymer 39(10):1879–1891

    CAS  Google Scholar 

  146. Endo K (2002) Synthesis and structure of poly(vinyl chloride). Prog Polym Sci 27:2021–2054

    CAS  Google Scholar 

  147. Fuchs NA (1964) The mechanics of aerosols. Pergamon, New York

    Google Scholar 

  148. Van de Ven TGM (1989) Colloidal hydrodynamics. Colloid Science, vol 4. Academic, New York

    Google Scholar 

  149. Van de Ven TGM, Mason SG (1977) The micro-rheology of colloidal dispersions. Part VIII: effect of shear on perikinetic doublet formation. Colloid Polym Sci 255:794–804

    Google Scholar 

  150. Chern CS, Kuo YN (1996) Shear-induced coagulation kinetics of semibatch seeded emulsion polymerization. Chem Eng Sci 51(7):1079–1087

    CAS  Google Scholar 

  151. Levich V (1962) Physicochemical hydrodynamics. Academic, London

    Google Scholar 

  152. Batchelor GK (2000) An introduction to fluid mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  153. Einarson MB, Berg JC (1993) Electrosteric stabilization of colloidal dispersions. J Colloid Interface Sci 155(1):165–172

    CAS  Google Scholar 

  154. Lazaridis N, Alexopoulos AH, Chatzi EG, Kiparissides C (1999) Steric stabilization in emulsion polymerization using oligomeric nonionic surfactants. Chem Eng Sci 54:3251–3261

    CAS  Google Scholar 

  155. Litster JD, Smit DJ, Hounslow MJ (1995) Adjustable discretized population balance for growth and aggregation. AICHE J 41:591–603

    CAS  Google Scholar 

  156. Salovey R, Cortellucci R, Roaldi A (1974) The surface area of bulk poly(vinyl chloride). Polym Eng Sci 14(2):120–123

    CAS  Google Scholar 

  157. Nilsson H, Silvegren C, Tornell B, Lundqvist J, Pettersson S (1985) Suspension stabilizers for PVC production III: control of resin porosity. J Vinyl Technol 7(3):123–127

    CAS  Google Scholar 

  158. Sarkar N, Archer WL (1991) Utilizing cellulose ethers as suspension agents in the polymerization of vinyl chloride. J Vinyl Technol 13(1):26–36

    CAS  Google Scholar 

  159. Allsopp MW (1977) Effect of vinyl chloride injection on the morphology of suspension-polymerized PVC. J Macromol Sci Chem 11(7):1223–1234

    Google Scholar 

  160. Cheng J, Langsam MJ (1984) Effect of cellulose suspension agent structure on the particle morphology of PVC. Part II. Interfacial properties. Macromol Sci Chem A21(4):395–409

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas Kiparissides .

Editor information

Editors and Affiliations

List of Symbols

List of Symbols

A 0 :

Reactor outside heat transfer area, m2

A a :

Reactor heat transfer area to the environment, m2

A i :

Reactor inside heat transfer area, m2

α m :

Monomer activity

A t :

Reactor top heat transfer area, m2

B i :

Virial coefficient of i component, m3/kmol

B m :

Virial coefficient of monomer, m3/kmol

B mw :

Virial coefficient of mixture monomer and water, m3/kmol

B w :

Virial coefficient of water, m3/kmol

C1, C2:

Model parameters

C pm :

Metal wall heat capacity, kJ/(kg K)

C pmix :

Mixture heat capacity, kJ/(kg K)

C PVA :

Concentration of the stabilizer, kg/m3

C pw :

Water heat capacity, kJ/(kg K)

D eq :

Jacket equivalent diameter, m

ΔHr:

Specific reaction enthalpy, kJ/kmol

D imp :

Impeller diameter, m

D pq :

Mean particle diameter, m

D R :

Reactor inside diameter, m

\( \widehat{f} \) :

Fugacity, Pa

f i :

Fractional particle number distribution

f i,j :

Efficiency of initiator i in the j phase

F w :

Mass flow rate of the water added to the reaction mixture, kg/h

G :

Particle growth rate due to polymerization in the polymer-rich phase, kg/s

g(u):

Breakage rate of drops of volume u, s−1

h i :

Heat transfer coefficient of the reaction mixture side, kJ/(m s K)

h o :

Heat transfer coefficient from the reactor wall to jacket, kJ/(m s K)

I :

Initiator molecule

I 0 :

Initial initiator concentration, g/kg VCM

K :

Solubility constant for the VCM in the aqueous phase, kg VCM/kg H20

k :

Thermal conductivity, kW/K

k(v, u):

Coalescence rate between two drops of volume v and u, m3/s

k B :

Boltzmann’s constant, m2 kg/(s2 K)

k bj :

Intramolecular transfer rate constant in the j phase, s−1

k di,j :

Decomposition rate constant of initiator i in the j phase, s−1

k fmj :

Chain transfer to monomer rate constant in the j phase, m3/(kmol s)

k fpj :

Chain transfer to polymer rate constant in the j phase, m3/(kmol s)

k I :

Rate constant for initiator decomposition, m3/(kmol s)

k p1 :

Propagation rate constant in the monomer-rich phase, m3/(kmol min)

k p2 :

Diffusion-controlled propagation rate constant in the polymer-rich phase, m3/(kmol min)

k pj :

Propagation rate constant in the j phase, m3/(kmol s)

k t :

Termination rate constant in the monomer phase, m3/(kmol s)

k t2 :

Diffusion-controlled termination rate constant in the polymer-rich phase, m3/(kmol min)

k t20 :

Termination rate constant in the polymer-rich phase, m3/(kmol min)

k tcj :

Termination by combination rate constant in the j phase, m3/(kmol s)

k tdj :

Termination by disproportionation rate constant in the j phase, m3/(kmol s)

k zj :

Inhibition rate constant in the j phase, m3/(kmol s)

L eq :

Jacket equivalent length, m

L n :

Number of long chain branches per polymer molecule

M :

Mass of monomer, kg

M 0 :

Initial mass of monomer, kg

M n :

Number average molecular weight, kg/kmol

M w :

Weight average molecular weight, kg/kmol

MWm:

Molecular weight of monomer, kg/kmol

MWw:

Molecular weight of water, kg/kmol

MWx:

Molecular weight of molecular species “x”, kg/kmol

N :

Agitation rate, rpm

n(v, t):

Number density function, m−6

n0(v):

Initial drop size distribution of the dispersed phase, m−6

N d :

Number of initiators used in the polymerization

N da :

Number of daughter drops per breakage event

N sa :

Number of satellite drops per breakage event

N i :

Particle number distribution

N We :

Weber number

P :

Total reactor pressure, Pa

P m :

Monomer partial pressure, Pa

P m sat :

Monomer saturation pressure, Pa

Pr :

Prandtl number

P w sat :

Water saturation pressure, Pa

[Px]:

“Dead” polymer chains, containing x monomer units, kmol/m3

R :

Ideal gas constant, J/mol/K

r :

Radius of colloidal particles, m

Re :

Reynolds number

R pm :

Polymerization rates in the monomer-rich phase, kmol/(m3 s)

R pp :

Polymerization rates in the polymer-rich phase, kmol/(m3 s)

\( \left[{R}_x^{\bullet}\right] \) :

“Live” macroradicals, containing x monomer units, kmol/m3

r λj,j :

“Live” polymer moment rate function, kmol/(m3 s)

r μj :

“Dead” polymer moment rate function, kmol/(m3 s)

S 0 :

Nucleation rate of primary particles of volume v0 in the monomer-rich phase, s−1

S d :

Number density of SCB per 1,000 monomer units

S n :

Number of short chain branches per polymer molecule

t :

Time, s

T :

Reactor mixture temperature, K

T 0 :

Reference temperature, K

T a :

Ambient temperature, K

T j :

Reactor’s jacket temperature, K

T m :

Temperature of the metal wall, K

T n :

Number of terminal double bonds per polymer molecule

u(u):

Number of droplets formed by the breakage of a drop of volume u

U a :

Heat transfer coefficient to the reactor environment, kJ/(m s K)

U t :

Heat transfer coefficient from the reactor top, kJ/(m s K)

V :

Total volume of the polymer particles, m3

v da :

Volume of daughter drops, m3

v sa :

Volume of satellite drops, m3

V f :

Free volume of the mixture in the polymer-rich phase, m3

V f * :

Free volume of the mixture at the critical monomer conversion, m3

V fm :

Free volume of monomer, m3

V fp :

Free volume of polymer, m3

V g :

Volume of gas phase, m3

V j :

Volume of j-phase, m3

V m :

Metal wall volume, m3

V mix :

Reaction mixture volume, m3

V R :

Total reactor volume, m3

W ij :

Fuch’s stability ratio

W w :

Total mass of water loaded in the reactor, kg

W :

Mass of water in the aqueous phase, kg

X :

Monomer conversion

X c :

Critical monomer conversion

X f :

Fractional monomer conversion

y m :

Mole fraction of monomer in the vapor phase

y w :

Mole fraction of water in the vapor phase

Z :

Inhibitor molecule

1.1 Greek Symbols

β :

Aggregation rate kernel, s−1

β(u, v):

Daughter drop breakage function, accounting for the probability that a drop of volume v is formed via the breakage of a drop of volume u, m−3

\( \dot{\upgamma} \) :

Mean value of the shear rate, s−1

\( {\dot{\gamma}}_{eff} \) :

Effective shear rate, s−1

Δv:

Relative droplet velocity, m/s

ε :

Porosity

\( \overline{\varepsilon} \) :

Average dissipation rate of turbulent kinetic energy per unit mass, m2/s3

η :

Kinematic viscosity, m2/s

[η]:

Intrinsic viscosity, m3/kg

θ :

Surface coverage

κ −1 :

Debye length, m

[λi,j]:

i-th moment of molecular weight distribution of “live” polymer radicals in the j phase, kmol/m3

λ b :

Breakage coalescence efficiency

λ c :

Coalescence efficiency

μ :

Viscosity, kg/(m s)

[μk]:

k-th moment of dead polymer chains, kmol/m3

ρ :

Density, kg/m3

ρ m :

Monomer density, kg/m3

ρ mix :

Mixture density, kg/m3

ρ p :

Polymer density, kg/m3

ρ w :

Water density, kg/m3

σ :

Interfacial tension, kg/s2

σ 0 :

Standard deviation

σ da :

Standard deviation of the distribution for daughter drops

σ sa :

Standard deviation of the distribution for satellite drops

φ :

Volume fraction of the dispersed phase

φ 1 :

Volume fraction of the monomer-rich phase

φ 2 :

Volume fraction of the polymer-rich phase

φ 2,C :

Critical value of the polymer volume fraction in the polymer-rich phase

φ cr :

Polymer volume fraction corresponding to the critical monomer conversion

φ j :

Volume fraction of the polymer in the j phase

φ pol :

Volume fraction of the polymer in the dispersed phase

\( {\widehat{\phi}}_m \) :

Fugacity coefficient of monomer

χ :

Flory–Huggins interaction parameter

ω b :

Breakage frequency, s−1

ω c :

Collision frequency, s−1

1.2 Superscripts

g :

Gas phase

m :

Monomer phase

p :

Polymer phase

w :

Aqueous phase

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kiparissides, C. (2017). Modeling of Suspension Vinyl Chloride Polymerization: From Kinetics to Particle Size Distribution and PVC Grain Morphology. In: Pauer, W. (eds) Polymer Reaction Engineering of Dispersed Systems. Advances in Polymer Science, vol 280. Springer, Cham. https://doi.org/10.1007/12_2017_16

Download citation

Publish with us

Policies and ethics