Skip to main content

Stem Cell Therapies for Wound Healing

  • Chapter
  • First Online:
Chronic Wounds, Wound Dressings and Wound Healing

Abstract

The number of individuals suffering from chronic cutaneous wounds has been increasing worldwide due to an increase in comorbidities such as vascular disease, diabetes, obesity, and aging population. In the USA, almost seven million Americans have chronic cutaneous ulcers. Moreover, chronic wound management is costly and present a substantial economic burden to the healthcare system. Various therapeutic modalities have been used. However, the treatment outcomes are not always satisfactory because of failure to achieve complete wound closure in around 60% of cases, high rate of recurrence, and scarring. Therefore, there is a need for more effective therapies. Stem cells offer promising possibilities. Preclinical studies have shown that mesenchymal stem cells (MSCs) have a competitive advantage over other types of stem cells due to their better defined potency, paracrine effects, immunomodulatory properties, and safety. For now, multipotent stem cells have a definite advantage in being used for the acceleration of healing. This has to do with their generally favorable risk/benefit ratio. Still, we do not reject the notion that pluripotent stem cells may find an extraordinary role in wound healing. When properly handled and controlled, such cells could be directed toward diverse differentiation pathways that might bring the field of tissue repair closer to regeneration or true wound healing. Large well-controlled clinical trials are needed to examine the capabilities of stem cells in humans and assess their safety profile. Herein, we highlight emerging treatments in tissue regeneration and repair and provide some perspectives on how to translate current knowledge about stem cells, both multipotent and pluripotent, into viable clinical approaches for treating patients with difficult to heal wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lazarus GS, Cooper DM, Knighton DR, et al. (1994) Definitions and guidelines for assessment of wounds and evaluation of healing. Wound Repair Regen 2(3):165–170

    Google Scholar 

  2. World Health Organization. Programme budget 2016. Accessed 22 Mar 2017

    Google Scholar 

  3. Phillips T, Stanton B, Provan A, et al. (1994) A study of the impact of leg ulcers on quality of life: financial, social, and psychologic implications. J Am Acad Dermatol 31(1):49–53

    Google Scholar 

  4. Baranoski S, Ayello EA, Baranoski S, et al. (2011) Wound care essentials: practice principles, 3rd edn. Lippincott, Willioams $ Wilkins, Philadelphia

    Google Scholar 

  5. Bergan JJ, Schmid-Schönbein GW, Smith PDC, et al. (2006) Chronic venous disease. N Engl J Med 355(5):488–498

    Google Scholar 

  6. Pastar I, Khan AA, Stojadinovic O, et al. (2012) Induction of specific microRNAs inhibits cutaneous wound healing. J Biol Chem 287(35):29324–29335

    Google Scholar 

  7. Nolan CJ, Damm P, Prentki M (2011) Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet 378(9786):169–181

    Article  PubMed  Google Scholar 

  8. Margolis DJ, Malay DS, Hoffstad OJ, et al. (2011) Incidence of diabetic foot ulcer and lower extremity amputation among Medicare beneficiaries, 2006 to 2008. Data Points Publication Series [Internet]. Agency for Healthcare Research and Quality (US), Rockville (MD)

    Google Scholar 

  9. Armstrong DG, Cohen K, Courric S, et al. (2011) Diabetic foot ulcers and vascular insufficiency: our population has changed, but our methods have not. J Diabetes Sci Technol 5(6):1591–1595

    Google Scholar 

  10. Dryburgh N, Smith F, Donaldson J, et al. (2008) Debridement for surgical wounds. Cochrane Database Syst Rev (3):CD006214

    Google Scholar 

  11. Sun X, Jiang K, Chen J, et al.  (2014) A systematic review of maggot debridement therapy for chronically infected wounds and ulcers. Int J Infect Dis 25:32–37

    Google Scholar 

  12. Nelson EA, Bell‐Syer SE, Cullum NA, et al. (2000) Compression for preventing recurrence of venous ulcers. Cochrane Database Syst Rev (4):CD002303

    Google Scholar 

  13. McInnes E, Jammali‐Blasi A, Bell‐Syer SE, et al. (2011) Support surfaces for pressure ulcer prevention. Cochrane Database Syst Rev (12):CD009490

    Google Scholar 

  14. Smith AN, Willis E, Chan VT, et al. (2013) Pressure ulcer treatment strategies: a systematic comparative effectiveness review. Ann Intern Med 159(1):39–50

    Google Scholar 

  15. Chou R, Dana T, Bougatsos C, et al. (2013) Pressure ulcer risk assessment and prevention: a systematic comparative effectiveness review. Ann Intern Med 159(1):28–38

    Google Scholar 

  16. Ubbink DT, Westerbos SJ, Evans D, et al. (2008) Topical negative pressure for treating chronic wounds. Cochrane Database Syst Rev (3):CD001898

    Google Scholar 

  17. Tang JC, Marston WA, Kirsner RS (2012) Wound Healing Society (WHS) venous ulcer treatment guidelines: what's new in five years? Wound Repair Regen 20(5):619–637

    Article  PubMed  Google Scholar 

  18. Polak A, Franek A, Taradaj J (2014) High-voltage pulsed current electrical stimulation in wound treatment. Adv Wound Care 3(2):104–117

    Article  Google Scholar 

  19. Aziz Z, Cullum N, Flemming K (2013) Electromagnetic therapy for treating venous leg ulcers. Cochrane Database Syst Rev (2):CD002933

    Google Scholar 

  20. Kranke P, Bennett MH, Martyn‐St James M, et al. (2012) Hyperbaric oxygen therapy for chronic wounds. Cochrane Database Syst Rev (4):CD004123

    Google Scholar 

  21. Goldstein LJ (2013) Hyperbaric oxygen for chronic wounds. Dermatol Ther 26(3):207–214

    Article  PubMed  Google Scholar 

  22. Stoekenbroek R, Santema T, Legemate D, et al. (2014) Hyperbaric oxygen for the treatment of diabetic foot ulcers: a systematic review. Eur J Vasc Endovasc Surg 47(6):647–655

    Google Scholar 

  23. Polak A, Franek A, Blaszczak E, et al. (2014) A prospective, randomized, controlled, clinical study to evaluate the efficacy of high-frequency ultrasound in the treatment of stage II and stage III pressure ulcers in geriatric patients. Ostomy Wound Manage 60(8):16–28

    Google Scholar 

  24. Cullum N, Al-Kurdi D, Bell-Syer SE (2010) Therapeutic ultrasound for venous leg ulcers. Cochrane Database Syst Rev (6):CD001180

    Google Scholar 

  25. O’Meara S, Al-Kurdi D, Ologun Y, et al. (2013) Antibiotics and antiseptics for venous leg ulcers. Cochrane Database Syst Rev. (12):CD003557

    Google Scholar 

  26. Storm‐Versloot MN, Vos CG, Ubbink DT, et al. (2010) Topical silver for preventing wound infection. Cochrane Database Syst Rev (3):CD006478

    Google Scholar 

  27. O’Meara S, Martyn-St JM (2013) Alginate dressings for venous leg ulcers. Cochrane Database Syst Rev (4):CD010182

    Google Scholar 

  28. O’Meara S, Martyn-St JM (2013) Foam dressings for venous leg ulcers. Cochrane Database Syst Rev (5):CD009907

    Google Scholar 

  29. Dumville JC, Deshpande S, O’Meara S, et al. (2011) Foam dressings for healing diabetic foot ulcers. Cochrane Database Syst Rev (9):CD009111

    Google Scholar 

  30. Dumville JC, Deshpande S, O’Meara S, et al. (2013) Hydrocolloid dressings for healing diabetic foot ulcers. Cochrane Database Syst Rev. (8):CD009099

    Google Scholar 

  31. Cha J, Falanga V (2007) Stem cells in cutaneous wound healing. Clin Dermatol 25(1):73–78

    Article  PubMed  Google Scholar 

  32. Marks PW, Witten CM, Califf RM (2017) Clarifying stem-cell therapy’s benefits and risks. N Engl J Med 376(11):1007–1009

    Article  PubMed  Google Scholar 

  33. Eming SA, Krieg T, Davidson JM (2007) Inflammation in wound repair: molecular and cellular mechanisms. J Inv Dermatol 127(3):514–525

    Article  CAS  Google Scholar 

  34. Li P, Li SH, Wu J, et al. (2013) Interleukin-6 downregulation with mesenchymal stem cell differentiation results in loss of immunoprivilege. J Cell Mol Med 17(9):1136–1145

    Google Scholar 

  35. Nombela-Arrieta C, Ritz J, Silberstein LE (2011) The elusive nature and function of mesenchymal stem cells. Nature Rev Mol Cell Biol 12(2):126–131

    Article  CAS  Google Scholar 

  36. Spaggiari GM, Capobianco A, Abdelrazik H, et al. (2008) Mesenchymal stem cells inhibit natural killer–cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2, 3-dioxygenase and prostaglandin E2. Blood 111(3):1327–1333

    Google Scholar 

  37. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822

    Article  CAS  PubMed  Google Scholar 

  38. Németh K, Leelahavanichkul A, Yuen PS, et al. (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E2–dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15(1):42–49

    Google Scholar 

  39. Meisel R, Zibert A, Laryea M, et al. (2004) Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2, 3-dioxygenase–mediated tryptophan degradation. Blood 103(12):4619–4621

    Google Scholar 

  40. Krampera M, Cosmi L, Angeli R, et al. (2006) Role for interferon-γ in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 24(2):386–398

    Google Scholar 

  41. Ren G, Su J, Zhang L, et al. (2009) Species Variation in the Mechanisms of Mesenchymal Stem Cell-Mediated Immunosuppression. Stem Cells 27(8):1954–1962

    Google Scholar 

  42. Kim W-S, Park B-S, Sung J-H, et al. (2007) Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci 48(1):15–24

    Google Scholar 

  43. Kwon DS, Gao X, Liu YB, et al. (2008) Treatment with bone marrow-derived stromal cells accelerates wound healing in diabetic rats. Int Wound J 5(3):453–463

    Google Scholar 

  44. Chen L, Tredget EE, Wu PY, et al. (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3(4):e1886

    Google Scholar 

  45. Kim S-W, Zhang H-Z, Guo L, Kim J-M, Kim MH (2012) Amniotic mesenchymal stem cells enhance wound healing in diabetic NOD/SCID mice through high angiogenic and engraftment capabilities. PLoS One 7(7):e41105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Houchen CW, George RJ, Sturmoski MA, et al. (1999) FGF-2 enhances intestinal stem cell survival and its expression is induced after radiation injury. Am J Physiol 276(1):G249–GG58

    Google Scholar 

  47. Wakabayashi K, Nagai A, Sheikh AM, et al. (2010) Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. J Neurosci Res 88(5):1017–1025

    Google Scholar 

  48. Yoon BS, Moon J-H, Jun EK, et al. (2009) Secretory profiles and wound healing effects of human amniotic fluid–derived mesenchymal stem cells. Stem Cells Devel 19(6):887–902

    Google Scholar 

  49. Hayashi Y, Tsuji S, Tsujii M, et al. (2008) Topical implantation of mesenchymal stem cells has beneficial effects on healing of experimental colitis in rats. J Pharmacol Exp Ther 326(2):523–531

    Google Scholar 

  50. Beckermann B, Kallifatidis G, Groth A, et al. (2008) VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br J Cancer 99(4):622–631

    Google Scholar 

  51. Wu Y, Chen L, Scott PG, et al. (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25(10):2648–2659

    Google Scholar 

  52. Khalili S, Liu Y, Kornete M, et al. (2012) Mesenchymal stromal cells improve salivary function and reduce lymphocytic infiltrates in mice with Sjögren’s-like disease. PLoS One 7(6):e38615

    Google Scholar 

  53. Yang M, Li Q, Sheng L, et al. (2011) Bone marrow–derived mesenchymal stem cells transplantation accelerates tissue expansion by promoting skin regeneration during expansion. Ann Surg 253(1):202–209

    Google Scholar 

  54. Park H-J, Shin JY, Lee BR, et al. (2012) Mesenchymal stem cells augment neurogenesis in the subventricular zone and enhance differentiation of neural precursor cells into dopaminergic neurons in the substantia nigra of a parkinsonian model. Cell Transpl 21(8):1629–1640

    Google Scholar 

  55. Chung R, Foster BK, Zannettino AC, et al. (2009) Potential roles of growth factor PDGF-BB in the bony repair of injured growth plate. Bone 44(5):878–885

    Google Scholar 

  56. Kilroy GE, Foster SJ, Wu X, et al. (2007) Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. J Cell Physiol 212(3):702–709

    Article  CAS  PubMed  Google Scholar 

  57. Bai L, Lennon DP, Caplan AI, et al. (2012) Hepatocyte growth factor mediates mesenchymal stem cell-induced recovery in multiple sclerosis models. Nat Neurosci 15(6):862–870

    Google Scholar 

  58. Wang F, Yasuhara T, Shingo T, et al. (2010) Intravenous administration of mesenchymal stem cells exerts therapeutic effects on parkinsonian model of rats: Focusing on neuroprotective effects of stromal cell-derived factor-1α. BMC Neurosci 11(1):1.

    Google Scholar 

  59. Landry Y, Lê O, Mace KA, et al. (2010) Secretion of SDF-1α by bone marrow-derived stromal cells enhances skin wound healing of C57BL/6 mice exposed to ionizing radiation. J Cell Mol Med 14(6b):1594–1604

    Google Scholar 

  60. Li N, Lu X, Zhao X, et al. (2009) Endothelial nitric oxide synthase promotes bone marrow stromal cell migration to the ischemic myocardium via upregulation of stromal cell-derived factor-1α. Stem Cells 27(4):961–970

    Google Scholar 

  61. Doorn J, Moll G, Le Blanc K, et al. (2011) Therapeutic applications of mesenchymal stromal cells: paracrine effects and potential improvements. Tissue Eng Part B Rev 18(2):101–115

    Google Scholar 

  62. Gilkes DM, Semenza GL, Wirtz D (2014) Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nature Rev Cancer 14(6):430–439

    Article  CAS  Google Scholar 

  63. Walter M, Wright KT, Fuller H, et al. (2010) Mesenchymal stem cell-conditioned medium accelerates skin wound healing: an in vitro study of fibroblast and keratinocyte scratch assays. Exp Cell Res 316(7):1271–1281

    Google Scholar 

  64. Javazon EH, Keswani SG, Badillo AT, et al. (2007) Enhanced epithelial gap closure and increased angiogenesis in wounds of diabetic mice treated with adult murine bone marrow stromal progenitor cells. Wound Repair Regen 15(3):350–359

    Google Scholar 

  65. Smith AN, Willis E, Chan VT, et al. (2010) Mesenchymal stem cells induce dermal fibroblast responses to injury. Exp Cell Res 316(1):48–54

    Google Scholar 

  66. Krasnodembskaya A, Song Y, Fang X, et al. (2010) Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 28(12):2229–2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ankrum J, Karp JM (2010) Mesenchymal stem cell therapy: two steps forward, one step back. Trends Mol Med 16(5):203–209

    Article  PubMed  PubMed Central  Google Scholar 

  68. Falanga V, Iwamoto S, Chartier M, et al. (2007) Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 13(6):1299–1312

    Google Scholar 

  69. Dash NR, Dash SN, Routray P, et al. (2009) Targeting nonhealing ulcers of lower extremity in human through autologous bone marrow-derived mesenchymal stem cells. Rejuv Res 12(5):359–366

    Google Scholar 

  70. Isakson M, de Blacam C, Whelan D, et al. (2015) Mesenchymal stem cells and cutaneous wound healing: current evidence and future potential. Stem Cells Int 2015:12, Article ID 831095

    Google Scholar 

  71. Zuk PA, Zhu M, Ashjian P, et al. (2002) Human adipose tissue is a source of multipotent stem cells. Molecular Biol cell 13(12):4279–4295

    Google Scholar 

  72. Gimble JM, Katz AJ, Bunnell BA (2007) Adipose-derived stem cells for regenerative medicine. Circ Res 100(9):1249–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fraser JK, Wulur I, Alfonso Z, et al. (2006) Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol 24(4):150–154

    Google Scholar 

  74. Rubio D, Garcia-Castro J, Martín MC, et al. (2005) Spontaneous human adult stem cell transformation. Cancer Res 65(8):3035–3039

    Google Scholar 

  75. Fuchs E (2008) Skin stem cells: rising to the surface. J Cell Biol 180(2):273–284

    Google Scholar 

  76. Mascré G, Dekoninck S, Drogat B, et al. (2012) Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 489(7415):257–262

    Google Scholar 

  77. Lin X, Kwak T, Fiore D, et al. (2014) An in vitro priming step increases the expression of numerous epidermal growth and migration mediators in a tissue-engineering construct. J Tissue Eng Regen Med 11(3):713–723

    Google Scholar 

  78. Duscher D, Rennert RC, Januszyk M, et al. (2014) Aging disrupts cell subpopulation dynamics and diminishes the function of mesenchymal stem cells. Sci Rep 4:7144

    Google Scholar 

  79. Yan J, Tie G, Wang S, et al. (2012) Type 2 diabetes restricts multipotency of mesenchymal stem cells and impairs their capacity to augment postischemic neovascularization in db/db mice. J Am Heart Assoc 1(6):e002238

    Google Scholar 

  80. Volarevic V, Arsenijevic N, Lukic ML, et al. (2011) Concise review: mesenchymal stem cell treatment of the complications of diabetes mellitus. Stem Cells 29(1):5–10

    Google Scholar 

  81. Tian H, Lu Y, Shah SP, et al. (2011) 14S, 21R-dihydroxydocosahexaenoic acid remedies impaired healing and mesenchymal stem cell functions in diabetic wounds. J Biol Chem 286(6):4443–4453

    Google Scholar 

  82. Nambu M, Kishimoto S, Nakamura S, et al. (2009) Accelerated wound healing in healing-impaired db/db mice by autologous adipose tissue-derived stromal cells combined with atelocollagen matrix. Ann Plast Surg 62(3):317–321

    Google Scholar 

  83. Health No (2007) Stem cell information

    Google Scholar 

  84. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317

    Google Scholar 

  85. Mandai M, Watanabe A, Kurimoto Y, et al. (2017) Autologous induced stem-cell–derived retinal cells for macular degeneration. N Engl J Med 376(11):1038–1046

    Google Scholar 

  86. Tong M, Lv Z, Liu L, et al. (2011) Mice generated from tetraploid complementation competent iPS cells show similar developmental features as those from ES cells but are prone to tumorigenesis. Cell Res 21(11):1634

    Google Scholar 

  87. Kang E, Wang X, Tippner-Hedges R, et al. (2016) Age-related accumulation of somatic mitochondrial DNA mutations in adult-derived human iPSCs. Cell Stem Cell 18(5):625–636

    Google Scholar 

  88. Ratajczak MZ, Zuba-Surma EK, Wysoczynski M, et al. (2008) Very small embryonic-like stem cells: characterization, developmental origin, and biological significance. Exp Hematol 36(6):742–751

    Google Scholar 

  89. Miyanishi M, Mori Y, Seita J, et al. (2013) Do pluripotent stem cells exist in adult mice as very small embryonic stem cells? Stem Cell Rep 1(2):198–208

    Google Scholar 

  90. Jun EK, Zhang Q, Yoon BS, et al. (2014) Hypoxic conditioned medium from human amniotic fluid-derived mesenchymal stem cells accelerates skin wound healing through TGF-β/SMAD2 and PI3K/Akt pathways. Int J Mol Sci 15(1):605–628

    Google Scholar 

  91. Chen L, Xu Y, Zhao J, et al. (2014) Conditioned medium from hypoxic bone marrow-derived mesenchymal stem cells enhances wound healing in mice. PLoS One 9(4):e96161

    Google Scholar 

  92. Teixeira FG, Carvalho MM, Sousa N, et al. (2013) Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? Cell Mol Life Sci 70(20):3871–3882

    Google Scholar 

  93. Salgado AJ, Gimble JM (2013) Secretome of mesenchymal stem/stromal cells in regenerative medicine. Biochimie 95(12):2195

    Google Scholar 

  94. Kober J, Gugerell A, Schmid M, et al. (2016) Wound healing effect of conditioned media obtained from adipose tissue on human skin cells: a comparative in vitro study. Ann Plast Surg 77(2):156–163

    Google Scholar 

  95. Roche S, D’Ippolito G, Gomez LA, et al. (2013) Comparative analysis of protein expression of three stem cell populations: models of cytokine delivery system in vivo. Int J Pharm 440(1):72–82

    Google Scholar 

  96. Sipp D, Turner L (2012) US regulation of stem cells as medical products. Science 338(6112):1296–1297

    Google Scholar 

  97. Yufit T, Carson P, Falanga V (2014) Topical delivery of cultured stem cells to human non-healing wounds: GMP facility development in an academic setting and FDA requirements for an IND and human testing. Curr Drug Deliv 11(5):572–581

    Google Scholar 

  98. Falanga V, Lindholm C, Carson PA, et al. (2012) Text atlas of wound management. CRC Press, Boca Raton, FL

    Google Scholar 

  99. Daley GQ, Hyun I, Apperley JF, et al. (2016) Setting global standards for stem cell research and clinical translation: the 2016 ISSCR guidelines. Stem Cell Rep 6(6):787–797

    Google Scholar 

  100. Daley GQ (2017) Polar extremes in the clinical use of stem cells. N Engl J Med 376(11):1075–1077

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman Grada M.D., M.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grada, A., Falanga, V. (2018). Stem Cell Therapies for Wound Healing. In: Shiffman, M., Low, M. (eds) Chronic Wounds, Wound Dressings and Wound Healing. Recent Clinical Techniques, Results, and Research in Wounds, vol 6. Springer, Cham. https://doi.org/10.1007/15695_2017_100

Download citation

  • DOI: https://doi.org/10.1007/15695_2017_100

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10697-3

  • Online ISBN: 978-3-030-10698-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics