Skip to main content

Novel Antimicrobial Peptides: Targeting Wound Infections Caused by ‘Superbugs’ Resistant to All Current Antibiotics

  • Chapter
  • First Online:
Burns, Infections and Wound Management

Part of the book series: Recent Clinical Techniques, Results, and Research in Wounds ((RCTRRW,volume 2))

  • 1245 Accesses

Abstract

There is an urgent unmet medical need for new antibiotics for wound and burn infections caused by multidrug-resistant (MDR) Gram-negative ‘superbugs’ Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae. The authors discuss the development of novel broad-spectrum lipopeptides that are very active against not only polymyxin-resistant Gram-negative pathogens but also MDR Gram-positive Staphylococcus aureus and Enterococcus faecium that also commonly cause serious wound infections. The authors describe MDR bacterial wound infections, mechanisms of polymyxin activity and resistance and the discovery of new polymyxin-like lipopeptides targeting MDR ‘superbugs’. These next-generation polymyxins hold significant potential for the treatment of chronic wound infections caused by problematic Gram-negative ‘superbugs’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Whitlock E, Morcom J, Spurling G, Janamian T, Ryan S (2014) Wound care costs in general practice—a cross-sectional study. Aust Fam Physician 43:143–146

    PubMed  Google Scholar 

  2. Jacobsen F, Fisahn C, Sorkin M, Thiele I, Hirsch T, Stricker I, Klaassen T, Roemer A, Fugmann B, Steinstraesser L (2011) Efficacy of topically delivered moxifloxacin against wound infection by Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 55:2325–2334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Church D, Elsayed S, Reid O, Winston B, Lindsay R (2006) Burn wound infections. Clin Microbiol Rev 19:403–434

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vindenes H, Bjerknes R (1995) Microbial colonization of large wounds. Burns 21:575–579

    Article  CAS  PubMed  Google Scholar 

  5. Bad bugs, no drugs. https://www.idsociety.org/uploadedFiles/IDSA/Policy_and_Advocacy/Current_Topics_and_Issues/Advancing_Product_Research_and_Development/Bad_Bugs_No_Drugs/Statements/As%20Antibiotic%20Discovery%20Stagnates%20A%20Public%20Health%20Crisis%20Brews.pdf. Accessed 21 Mar 2017

  6. Gravante G, Delogu D, Sconocchia G (2007) “Systemic apoptotic response” after thermal burns. Apoptosis 12:259–270

    Article  CAS  PubMed  Google Scholar 

  7. Honari S (2004) Topical therapies and antimicrobials in the management of burn wounds. Crit Care Nurs Clin North Am 16:1–11

    Article  PubMed  Google Scholar 

  8. Thomas CM, Hothersall J, Willis CL, Simpson TJ (2010) Resistance to and synthesis of the antibiotic mupirocin. Nat Rev Microbiol 8:281–289

    Article  CAS  PubMed  Google Scholar 

  9. Sevgi M, Toklu A, Vecchio D et al (2013) Topical antimicrobials for burn infections – an update. Recent Pat Antiinfect Drug Discov 8:161–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Talbot GH, Bradley J, Edwards JE Jr, Gilbert D, Scheld M, Bartlett JG, Antimicrobial availability task force of the infectious diseases society of America (2006) Bad bugs need drugs: an update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Clin Infect Dis 42:657–668

    Article  PubMed  Google Scholar 

  11. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48:1–12

    Article  PubMed  Google Scholar 

  12. Gilbert DN, Guidos RJ, Boucher HW, Talbot GH, Spellberg B, Edwards JE Jr, Scheld WM, Bradley JS, Bartlett JG (2010) The 10 × 20 Initiative: Pursuing a global commitment to develop 10 new antibacterial drugs by 2020. Clin Infect Dis 50:1081–1083

    Article  Google Scholar 

  13. Centers for Disease Control and Prevention (2013) Antibiotic resistance threats in the United States

    Google Scholar 

  14. Evans ME, Feola DJ, Rapp RP (1999) Polymyxin B sulfate and colistin: old antibiotics for emerging multiresistant gram-negative bacteria. Ann Pharmacother 33:960–967

    Article  CAS  PubMed  Google Scholar 

  15. Falagas ME, Kasiakou SK (2005) Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis 40:1333–1341

    Article  CAS  PubMed  Google Scholar 

  16. Landman D, Georgescu C, Martin DA et al (2008) Polymyxins revisited. Clin Microbiol Rev 21:449–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zavascki AP, Goldani LZ, Li J, Nation RL (2007) Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J Antimicrob Chemother 60:1206–1215

    Article  CAS  PubMed  Google Scholar 

  18. Bergen PJ, Tsuji BT, Bulitta JB, Forrest A, Jacob J, Sidjabat HE, Paterson DL, Nation RL, Li J (2011) Synergistic killing of multidrug-resistant Pseudomonas aeruginosa at multiple inocula by colistin combined with doripenem in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother 55:5685–5695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tan CH, Li J, Nation RL (2007) Activity of colistin against heteroresistant Acinetobacter baumannii and emergence of resistance in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother 51:3413–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Poudyal A, Howden BP, Bell JM, Gao W, Owen RJ, Turnidge JD, Nation RL, Li J (2008) In vitro pharmacodynamics of colistin against multidrug-resistant Klebsiella pneumoniae. J Antimicrob Chemother 62:1311–1318

    Article  CAS  PubMed  Google Scholar 

  21. Gales AC, Jones RN, Sader HS (2011) Contemporary activity of colistin and polymyxin B against a worldwide collection of Gram-negative pathogens: results from the SENTRY Antimicrobial Surveillance Program (2006–09). J Antimicrob Chemother 66:2070–2074

    Article  CAS  PubMed  Google Scholar 

  22. Paterson DL, Lipman J (2007) Returning to the pre-antibiotic era in the critically ill: the XDR problem. Crit Care Med 35:1789–1791

    Article  PubMed  Google Scholar 

  23. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu JH, Shen J (2016) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16(2):161–168

    Article  PubMed  CAS  Google Scholar 

  24. Webb HE, Granier SA, Marault M, Millemann Y, den Bakker HC, Nightingale KK, Bugarel M, Ison SA, Scott HM, Loneragan GH (2016) Dissemination of the mcr-1 colistin resistance gene. Lancet Infect Dis 16:144–145

    Article  PubMed  Google Scholar 

  25. Li J, Coulthard K, Milne R, Nation RL, Conway S, Peckham D, Etherington C, Turnidge J (2003) Steady-state pharmacokinetics of intravenous colistin methanesulfonate in patients with cystic fibrosis. J Antimicrob Chemother 52:987–992

    Article  CAS  PubMed  Google Scholar 

  26. Li J, Milne RW, Nation RL, Turnidge JD, Smeaton TC, Coulthard K (2003) Use of high-performance liquid chromatography to study the pharmacokinetics of colistin sulfate in rats following intravenous administration. Antimicrob Agents Chemother 47:1766–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li J, Milne RW, Nation RL, Turnidge JD, Smeaton TC, Coulthard K (2004) Pharmacokinetics of colistin methanesulphonate and colistin in rats following an intravenous dose of colistin methanesulphonate. J Antimicrob Chemother 53:837–840

    Article  CAS  PubMed  Google Scholar 

  28. Li J, Nation RL, Owen RJ, Wong S, Spelman D, Franklin C (2007) Antibiograms of multidrug-resistant clinical Acinetobacter baumannii: promising therapeutic options for treatment of infection with colistin-resistant strains. Clin Infect Dis 45:594–598

    Article  CAS  PubMed  Google Scholar 

  29. Li J, Nation RL, Turnidge JD, Milne RW, Coulthard K, Rayner CR, Paterson DL (2006) Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect Dis 6:589–601

    Article  CAS  PubMed  Google Scholar 

  30. Li J, Rayner CR, Nation RL, Deans R, Boots R, Widdecombe N, Douglas A, Lipman J (2005) Pharmacokinetics of colistin methanesulfonate and colistin in a critically ill patient receiving continuous venovenous hemodiafiltration. Antimicrob Agents Chemother 49:4814–4815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li J, Rayner CR, Nation RL, Owen RJ, Spelman D, Tan KE, Liolios L (2006) Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 50:2946–2950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dudhani RV, Turnidge JD, Coulthard K, Milne RW, Rayner CR, Li J, Nation RL (2010) Elucidation of the pharmacokinetic/pharmacodynamic determinant of colistin activity against Pseudomonas aeruginosa in murine thigh and lung infection models. Antimicrob Agents Chemother 54:1117–1124

    Article  CAS  PubMed  Google Scholar 

  33. Dudhani RV, Turnidge JD, Nation RL, Li J (2010) fAUC/MIC is the most predictive pharmacokinetic/pharmacodynamic index of colistin against Acinetobacter baumannii in murine thigh and lung infection models. J Antimicrob Chemother 65:1984–1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Owen RJ, Li J, Nation RL, Spelman D (2007) In vitro pharmacodynamics of colistin against Acinetobacter baumannii clinical isolates. J Antimicrob Chemother 59:473–477

    Article  CAS  PubMed  Google Scholar 

  35. Bergen PJ, Bulitta JB, Forrest A, Tsuji BT, Li J, Nation RL (2010) Pharmacokinetic/pharmacodynamic investigation of colistin against Pseudomonas aeruginosa using an in vitro model. Antimicrob Agents Chemother 54(9):3783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bergen PJ, Forrest A, Bulitta JB, Tsuji BT, Sidjabat HE, Paterson DL, Li J, Nation RL (2011) Clinically relevant plasma concentrations of colistin in combination with imipenem enhance pharmacodynamic activity against multidrug-resistant Pseudomonas aeruginosa at multiple inocula. Antimicrob Agents Chemother 55:5134–5142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bergen PJ, Li J, Nation RL, Turnidge JD, Coulthard K, Milne RW (2008) Comparison of once-, twice- and thrice-daily dosing of colistin on antibacterial effect and emergence of resistance: studies with Pseudomonas aeruginosa in an in vitro pharmacodynamic model. J Antimicrob Chemother 61:636–642

    Article  CAS  PubMed  Google Scholar 

  38. Bergen PJ, Li J, Rayner CR, Nation RL (2006) Colistin methanesulfonate is an inactive prodrug of colistin against Pseudomonas aeruginosa. Antimicrob Agents Chemother 50:1953–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Garonzik SM, Li J, Thamlikitkul V, Paterson DL, Shoham S, Jacob J, Silveira FP, Forrest A, Nation RL (2011) Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother 55:3284–3294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zavascki AP, Goldani LZ, Cao GY, Superti SV, Lutz L, Barth AL, Ramos F, Boniatti MM, Nation RL, Li J (2008) Pharmacokinetics of intravenous polymyxin B in critically-ill patients. Clin Infect Dis 47:1298–1304

    Article  CAS  PubMed  Google Scholar 

  41. Li J, Turnidge J, Milne R, Coulthard K (2001) In vitro pharmacodynamic properties of colistin and colistin methanesulfonate against Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother 45:781–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Velkov T, Roberts KD, Nation RL, Thompson PE, Li J (2013) Pharmacology of polymyxins: new insights into an ‘old’ class of antibiotics. Future Microbiol 8:711–724

    Article  CAS  PubMed  Google Scholar 

  43. Nation RL, Velkov T, Li J (2014) Colistin and Polymyxin B: Peas in a pod, or chalk and cheese? Clin Infect Dis 59:88–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cheah SE, Li J, Nation RL, Bulitta JB (2015) Novel rate-area-shape modeling approach to quantify bacterial killing and regrowth for in vitro static time-kill studies. Antimicrob Agents Chemother 59:381–388

    Article  PubMed  CAS  Google Scholar 

  45. Clausell A, Garcia-Subirats M, Pujol M, Busquets MA, Rabanal F, Cajal Y (2007) Gram-negative outer and inner membrane models: insertion of cyclic cationic lipopeptides. J Phys Chem B 111:551–563

    Article  CAS  PubMed  Google Scholar 

  46. Helander IM, Kilpelainen I, Vaara M (1994) Increased substitution of phosphate groups in lipopolysaccharides and lipid A of the polymyxin-resistant pmrA mutants of Salmonella typhimurium: a 31P-NMR study. Mol Microbiol 11:481–487

    Article  CAS  PubMed  Google Scholar 

  47. Moskowitz SM, Ernst RK, Miller SI (2004) PmrAB, a two-component regulatory system of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to lipid A. J Bacteriol 186:575–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Helander IM, Kato Y, Kilpeläinen I, Kostiainen R, Lindner B, Nummila K, Sugiyama T, Yokochi T (1996) Characterization of lipopolysaccharides of polymyxin-resistant and polymyxin-sensitive Klebsiella pneumoniae O3. Eur J Biochem 237:272–278

    Article  CAS  PubMed  Google Scholar 

  49. Clements A, Tull D, Jenney AW, Farn JL, Kim SH, Bishop RE, McPhee JB, Hancock RE, Hartland EL, Pearse MJ, Wijburg OL, Jackson DC, McConville MJ, Strugnell RA (2007) Secondary acylation of Klebsiella pneumoniae lipopolysaccharide contributes to sensitivity to antibacterial peptides. J Biol Chem 282:15569–15577

    Article  CAS  PubMed  Google Scholar 

  50. Perez JC, Groisman EA (2007) Acid pH activation of the PmrA/PmrB two-component regulatory system of Salmonella enterica. Mol Microbiol 63:283–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Adams MD, Nickel GC, Bajaksouzian S, Lavender H, Murthy AR, Jacobs MR, Bonomo RA (2009) Resistance to colistin in Acinetobacter baumannii associated with mutations in the PmrAB two-component system. Antimicrob Agents Chemother 53:3628–3634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Beceiro A, Llobet E, Aranda J, Bengoechea JA, Doumith M, Hornsey M, Dhanji H, Chart H, Bou G, Livermore DM, Woodford N (2011) Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system. Antimicrob Agents Chemother 55:3370–3379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fernandez L, Gooderham WJ, Bains M, McPhee JB, Wiegand I, Hancock RE (2010) Adaptive resistance to the “last hope” antibiotics polymyxin B and colistin in Pseudomonas aeruginosa is mediated by the novel two-component regulatory system ParR-ParS. Antimicrob Agents Chemother 54:3372–3382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Velkov T, Thompson PE, Nation RL, Li J (2010) Structure-activity relationships of polymyxin antibiotics. J Med Chem 53:1898–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Weinstein J, Afonso A, Moss E Jr, Miller GH (1998) Selective chemical modifications of polymyxin B. Bioorg Med Chem Lett 8:3391–3396

    Article  CAS  PubMed  Google Scholar 

  56. Tsubery H, Ofek I, Cohen S, Fridkin M (2001) N-terminal modifications of Polymyxin B nonapeptide and their effect on antibacterial activity. Peptides 22:1675–1681

    Article  CAS  PubMed  Google Scholar 

  57. Tsubery H, Ofek I, Cohen S, Fridkin M (2000) Structure-function studies of polymyxin B nonapeptide: implications to sensitization of gram-negative bacteria. J Med Chem 43:3085–3092

    Article  CAS  PubMed  Google Scholar 

  58. Vaara M, Fox J, Loidl G, Siikanen O, Apajalahti J, Hansen F, Frimodt-Møller N, Nagai J, Takano M, Vaara T (2008) Novel polymyxin derivatives carrying only three positive charges are effective antibacterial agents. Antimicrob Agents Chemother 52:3229–3236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. O'Dowd H, Kim B, Margolis P, Wang W, Wu C, Lopez SL, Blais J (2007) Preparation of tetra-Boc-protected polymyxin B nonapeptide. Tetrahedron Lett 48:2003–2005

    Article  CAS  Google Scholar 

  60. Chihara S, Ito A, Yahata M, Tobita T, Koyama Y (1974) Chemical synthesis, isolation, and characterization of alpha-N-fattyacyl colistin nonapeptide with special reference to the correlation between antimicrobial activity and carbon number of fattyacyl moiety. Agr Biol Chem 38:521–529

    Article  CAS  Google Scholar 

  61. Leese RA (2010) Antibiotic compositions for the treatment of Gram-negative infections. US Patent Number 8343912

    Google Scholar 

  62. Velkov T, Roberts KD, Nation RL, Wang J, Thompson PE, Li J (2014) Teaching ‘old’ polymyxins new tricks: new-generation lipopeptides targeting gram-negative superbugs. ACS Chem Biol 9:1172–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Srimal S, Surolia N, Balasubramanian S, Surolia A (1996) Titration calorimetric studies to elucidate the specificity of the interactions of polymyxin B with lipopolysaccharides and lipid A. Biochem J 315(Pt 2):679–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Soon RL, Velkov T, Chiu F, Thompson PE, Kancharla R, Roberts K, Larson I, Nation RL, Li J (2011) Design, synthesis, and evaluation of a new fluorescent probe for measuring polymyxin-lipopolysaccharide binding interactions. Anal Biochem 409:273–283

    Article  CAS  PubMed  Google Scholar 

  65. Zhao J, Cheah S-E, Roberts KD, Nation RL, Thompson PE, Velkov T, Du Z, Johnson MD, Li J (2016) Transcriptomic Analysis of the Activity of a Novel Polymyxin against Staphylococcus aureus. mSphere 1(4):e00119-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Bonomo RA, Van Zile PS, Li Q, Shermock KM, McCormick WG, Kohut B (2007) Topical triple-antibiotic ointment as a novel therapeutic choice in wound management and infection prevention: a practical perspective. Expert Rev Anti-Infect Ther 5:773–782

    Article  CAS  PubMed  Google Scholar 

  67. Zhu C, Zhao J, Kempe K, Wilson P, Wang J, Velkov T, Li J, Davis TP, Whittaker MR, Haddleton DM (2017) A hydrogel-based localized release of colistin for antimicrobial treatment of burn wound infection. Macromol Biosci 17(2):1600320

    Article  CAS  Google Scholar 

  68. Steinstraesser L, Trust G, Rittig A, Hirsch T, Kesting MR, Steinau HU, Jacobsen F (2011) Colistin-loaded silk membranes against wound infection with Pseudomonas aeruginosa. Plast Reconstr Surg 127:1838–1846

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Velkov Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Velkov, T., Zhu, C., Haddleton, D.M., Li, J. (2017). Novel Antimicrobial Peptides: Targeting Wound Infections Caused by ‘Superbugs’ Resistant to All Current Antibiotics. In: Shiffman, M., Low, M. (eds) Burns, Infections and Wound Management. Recent Clinical Techniques, Results, and Research in Wounds, vol 2. Springer, Cham. https://doi.org/10.1007/15695_2017_34

Download citation

  • DOI: https://doi.org/10.1007/15695_2017_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10685-0

  • Online ISBN: 978-3-030-10686-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics