Skip to main content

The Chemistry and Pharmacology of Synthetic Cannabinoid Receptor Agonist New Psychoactive Substances: Evolution

  • Chapter
  • First Online:
New Psychoactive Substances

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 252))

Abstract

Synthetic cannabinoid receptor agonists (SCRAs) are the largest and most structurally diverse class of new psychoactive substances (NPS). Although the earliest SCRA NPS were simply repurposed from historical academic manuscripts or pharmaceutical patents describing cannabinoid ligands, recent examples bear hallmarks of rational design. SCRA NPS manufacturers have applied traditional medicinal chemistry strategies (such as molecular hybridization, bioisosteric replacement, and scaffold hopping) to existing cannabinoid templates in order to generate new molecules that circumvent structure-based legislation. Most SCRAs potently activate cannabinoid type 1 and type 2 receptors (CB1 and CB2, respectively), with the former contributing to the psychoactivity of these substances. SCRAs are generally more toxic than the Δ9-tetrahydrocannabinol (Δ9-THC) found in cannabis, and this may be due to ligand bias, metabolism, or off-target activity. This chapter will chart the evolution of recently identified SCRA NPS chemotypes, as well as their putative manufacturing by-products and thermolytic degradants, and describe structure-activity relationships within each class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Δ9-THC:

(6aR,10aR)-6,6,9-Trimethyl-3-pentyl-6a,7,8,10a-tetrahydro-6H-dibenzo[b,d]pyran-1-ol (Δ9-tetrahydrocannabinol)

3-CAF:

Naphthalen-2-yl 1-(2-fluorophenyl)-1H-indazole-3-carboxylate

4-HTMPIPO:

4-Hydroxy-3,3,4-trimethyl-1-(1-pentyl-1H-indol-3-yl)pentan-1-one

5Cl-NNEI:

1-(5-Chloropentyl)-N-(naphthalen-1-yl)-1H-indole-3-carboxamide

5Cl-UR-144:

[1-(5-Chloropentyl)-1H-indol-3-yl](2,2,3,3-tetramethylcyclopropyl)methanone

5F-AB-FUPPYCA:

N-[(2S)-1-Amino-3-methyl-1-oxobutan-2-yl]-1-(5-fluoropentyl)-5-(4-fluorophenyl)-1H-pyrazole-3-carboxamide

5F-AB-PICA:

N-[(2S)-1-Amino-3-methyl-1-oxobutan-2-yl]-1-(5-fluoropentyl)-1H-indole-3-carboxamide

5F-AB-PINACA:

N-[(2S)-1-Amino-3-methyl-1-oxobutan-2-yl]-1-(5-fluoropentyl)-1H-indazole-3-carboxamide

5F-ADB-PICA:

N-[(2S)-1-Amino-3,3-dimethyl-1-oxobutan-2-yl]-1-(5-fluoropentyl)-1H-indole-3-carboxamide

5F-ADB-PINACA:

N-[(2S)-1-Amino-3,3-dimethyl-1-oxobutan-2-yl]-1-(5-fluoropentyl)-1H-indazole-3-carboxamide

5F-AKB-57:

Adamantan-1-yl 1-(5-fluoropentyl)-1H-indazole-3-carboxylate

5F-AKB-48-7N:

N-(Adamantan-1-yl)-1-(5-fluoropentyl)-1H-pyrrolo[2,3-b]pyridine-3-carboxamide

5F-AMB-PICA:

Methyl (2S)-2-{[1-(5-fluoropentyl)-1H-indole-3-carbonyl]amino}-3-methylbutanoate

5F-AMB-PINACA:

Methyl (2S)-2-{[1-(5-fluoropentyl)-1H-indazole-3-carbonyl]amino}-3-methylbutanoate

5F-AMPPPCA:

N-(Adamantan-1-yl)-1-(5-fluoropentyl)-4-methyl-5-phenyl-1H-pyrazole-3-carboxamide

5F-APICA:

N-(Adamantan-1-yl)-1-(5-fluoropentyl)-1H-indole-3-carboxamide

5F-APINACA:

N-(Adamantan-1-yl)-1-(5-fluoropentyl)-1H-indazole-3-carboxamide

5F-CUMYL-PICA:

1-(5-Fluoropentyl)-N-(2-phenylpropan-2-yl)-1H-indole-3-carboxamide

5F-CUMYL-PINACA:

1-(5-Fluoropentyl)-N-(2-phenylpropan-2-yl)-1H-indazole-3-carboxamide

5F-MDMB-PICA:

Methyl (2S)-2-{[1-(5-fluoropentyl)-1H-indole-3-carbonyl]amino}-3,3-dimethylbutanoate

5F-MDMB-PINACA:

Methyl (2S)-2-{[1-(5-fluoropentyl)-1H-indazole-3-carbonyl]amino}-3,3-dimethylbutanoate

5F-MN-18:

1-(5-Fluoropentyl)-N-(naphthalen-1-yl)-1H-indazole-3-carboxamide

5F-NNEI:

1-(5-Fluoropentyl)-N-(naphthalen-1-yl)-1H-indole-3-carboxamide

5F-NPB-22-7N:

Quinolin-8-yl 1-(5-fluoropentyl)-1H-pyrrolo[2,3-b]pyridine-3-carboxylate

5F-PB-22:

Quinolin-8-yl 1-(5-fluoropentyl)-1H-indole-3-carboxylate

5F-PCN:

1-(5-Fluoropentyl)-N-(naphthalen-1-yl)-1H-pyrrolo[3,2-c]pyridine-3-carboxamide

5F-SBD-005:

Naphthalen-1-yl 1-(5-fluoropentyl)-1H-indazole-3-carboxylate

A-836339:

N-(3-(2-methoxyethyl)-4,5-dimethylthiazol-2(3H)-ylidene)-2,2,3,3-tetramethylcyclopropane-1-carboxamide

AB-001:

(Adamantan-1-yl)(1-pentyl-1H-indol-3-yl)methanone

AB-005-azepane:

(1-(1-Methylazepan-3-yl)-1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)methanone

AB-CHFUPYCA:

N-[(2S)-1-Amino-3-methyl-1-oxobutan-2-yl]-1-(cyclohexylmethyl)-3-(4-fluorophenyl)-1H-pyrazole-5-carboxamide

AB-CHMINACA:

N-[(2S)-1-Amino-3-methyl-1-oxobutan-2-yl]-1-(cyclohexylmethyl)-1H-indazole-3-carboxamide

AB-CHMINACA-2H-indazole:

N-(1-Amino-3-methyl-1-oxobutan-2-yl)-2-(cyclohexylmethyl)-2H-indazole-3-carboxamide

AB-FUBICA:

N-[(2S)-1-Amino-3-methyl-1-oxobutan-2-yl]-1-[(4-fluorophenyl)methyl]-1H-indole-3-carboxamide

AB-FUBINACA:

N-[(2S)-1-Amino-3-methyl-1-oxobutan-2-yl]-1-[(4-fluorophenyl)methyl]-1H-indazole-3-carboxamide

AB-PICA:

N-[(2S)-1-Amino-3-methyl-1-oxobutan-2-yl]-1-pentyl-1H-indole-3-carboxamide

AB-PINACA:

N-[(2S)-1-Amino-3-methyl-1-oxobutan-2-yl]-1-pentyl-1H-indazole-3-carboxamide

ADB-CHMINACA:

N-[(2S)-1-Amino-3,3-dimethyl-1-oxobutan-2-yl]-1-(cyclohexylmethyl)-1H-indazole-3-carboxamide

ADB-FUBICA:

N-[(2S)-1-Amino-3,3-dimethyl-1-oxobutan-2-yl]-1-[(4-fluorophenyl)methyl]-1H-indole-3-carboxamide

ADB-FUBINACA:

N-[(2S)-1-Amino-3,3-dimethyl-1-oxobutan-2-yl]-1-[(4-fluorophenyl)methyl]-1H-indazole-3-carboxamide

ADB-PICA:

N-[(2S)-1-Amino-3,3-dimethyl-1-oxobutan-2-yl]-1-pentyl-1H-indole-3-carboxamide

ADSB-FUB-187:

7-Chloro-N-[(2S)-1-({2-[(cyclopropanesulfonyl)amino]ethyl}amino)-3,3-dimethyl-1-oxobutan-2-yl]-1-[(4-fluorophenyl)methyl]-1H-indazole-3-carboxamide

APP-FUBINACA:

N-[(2S)-1-Amino-1-oxo-3-phenylpropan-2-yl]-1-[(4-fluorophenyl)methyl]-1H-indazole-3-carboxamide

AKB-48:

N-(Adamantan-1-yl)-1-pentyl-1H-indazole-3-carboxamide

AM-2201:

[1-(5-Fluoropentyl)-1H-indol-3-yl](naphthalen-1-yl)methanone

AMB-CHMICA:

Methyl (2S)-2-{[1-(cyclohexylmethyl)-1H-indole-3-carbonyl]amino}-3-methylbutanoate

AMB-CHMINACA:

Methyl (2S)-2-{[1-(cyclohexylmethyl)-1H-indazole-3-carbonyl]amino}-3-methylbutanoate

AMB-FUBICA:

Methyl (2S)-2-({1-[(4-fluorophenyl)methyl]-1H-indole-3-carbonyl}amino)-3-methylbutanoate

AMB-FUBINACA:

Methyl (2S)-2-({1-[(4-fluorophenyl)methyl]-1H-indazole-3-carbonyl}amino)-3-methylbutanoate

AMB-PICA:

Methyl (2S)-2-[(1-pentyl-1H-indole-3-carbonyl)amino]-3-methylbutanoate

AMB-PINACA:

Methyl (2S)-2-[(1-pentyl-1H-indazole-3-carbonyl)amino]-3-methylbutanoate

AMPPPCA:

N-(Adamantan-1-yl)-4-methyl-1-pentyl-5-phenyl-1H-pyrazole-3-carboxamide

APICA:

N-(Adamantan-1-yl)-1-pentyl-1H-indole-3-carboxamide

APINAC:

Adamantan-1-yl 1-pentyl-1H-indazole-3-carboxylate

APINACA:

N-(Adamantan-1-yl)-1-pentyl-1H-indazole-3-carboxamide

APINACA-2H-indazole:

N-(Adamantan-1-yl)-2-pentyl-2H-indazole-3-carboxamide

BB-22:

Quinolin-8-yl 1-(cyclohexylmethyl)-1H-indole-3-carboxylate

BIM-018:

(Naphthalen-1-yl)(1-pentyl-1H-benzimidazol-2-yl)methanone

BiPICANA:

N-(Naphthalen-1-yl)-1-pentyl-N-(1-pentyl-1H-indole-3-carbonyl)-1H-indole-3-carboxamide

BzODZ-EPyr:

3-Benzyl-5-(1-(2-(pyrrolidin-1-yl)ethyl)-1H-indol-3-yl)-1,2,4-oxadiazole

CBL-018:

Naphthalen-1-yl 1-pentyl-1H-indole-3-carboxylate

CBL-2201:

Naphthalen-1-yl 1-(5-fluoropentyl)-1H-indole-3-carboxylate

CP 47,497-C8:

2-[(1S,3R)-3-Hydroxycyclohexyl]-5-(2-methylnonan-2-yl)phenol

CUMYL-4CN-B7AICA:

1-(4-Cyanobutyl)-N-(2-phenylpropan-2-yl)-1H-pyrrolo[2,3-b]pyridine-3-carboxamide

CUMYL-5F-P7AICA:

1-(5-Fluoropentyl)-N-(2-phenylpropan-2-yl)-1H-pyrrolo[2,3-b]pyridine-3-carboxamide

CUMYL-BICA:

1-Butyl-N-(2-phenylpropan-2-yl)-1H-indole-3-carboxamide

CUMYL-BINACA:

1-Butyl-N-(2-phenylpropan-2-yl)-1H-indazole-3-carboxamide

CUMYL-CHMICA:

1-(Cyclohexylmethyl)-N-(2-phenylpropan-2-yl)-1H-indole-3-carboxamide

CUMYL-CHMINACA:

1-(Cyclohexylmethyl)-N-(2-phenylpropan-2-yl)-1H-indazole-3-carboxamide

CUMYL-FUBICA:

1-(4-Fluorobenzyl)-N-(2-phenylpropan-2-yl)-1H-indole-3-carboxamide

CUMYL-FUBINACA:

1-(4-Fluorobenzyl)-N-(2-phenylpropan-2-yl)-1H-indazole-3-carboxamide

CUMYL-PEGACLONE:

5-Pentyl-2-(2-phenylpropan-2-yl)-2,5-dihydro-1H-pyrido[4,3-b]indol-1-one

CUMYL-PICA:

1-Pentyl-N-(2-phenylpropan-2-yl)-1H-indole-3-carboxamide

CUMYL-PINACA:

1-Pentyl-N-(2-phenylpropan-2-yl)-1H-indazole-3-carboxamide

DP-UR-144:

(1H-Indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)methanone

EG-018:

(Naphthalen-1-yl)(9-pentyl-9H-carbazol-3-yl)methanone

EG-2201:

[9-(5-Fluoropentyl)-9H-carbazol-3-yl](naphthalen-1-yl)methanone

FAB-144:

[1-(5-Fluoropentyl)-1H-indazol-3-yl](2,2,3,3-tetramethylcyclopropyl)methanone

FDU-NNEI:

1-[(4-Fluorophenyl)methyl]-N-(naphthalen-1-yl)-1H-indole-3-carboxamide

FDU-PB-22:

Naphthalen-1-yl 1-[(4-fluorophenyl)methyl]-1H-indole-3-carboxylate

FUB-144:

{1-[(4-Fluorophenyl)methyl]-1H-indol-3-yl}(2,2,3,3-tetramethylcyclopropyl)methanone

FUB-AKB-48:

N-(Adamantan-1-yl)-1-(4-fluorobenzyl)-1H-indazole-3-carboxamide

FUB-PB-22:

Quinolin-8-yl 1-[(4-fluorophenyl)methyl]-1H-indole-3-carboxylate

FUBIMINA:

[1-(5-Fluoropentyl)-1H-benzimidazol-2-yl](naphthalen-1-yl)methanone

JWH-018:

(Naphthalen-1-yl)(1-pentyl-1H-indol-3-yl)methanone

M-5FPIC:

Methyl 1-(5-fluoropentyl)-1H-indole-3-carboxylate

MCBH-1:

1-(Cyclohexylmethyl)-2-(4-ethoxybenzyl)-N,N-diethyl-1H-benzo[d]imidazole-5-carboxamide

M-CHMIC:

Methyl 1-(cyclohexylmethyl)-1H-indole-3-carboxylate

MDMB-CHMCZCA:

Methyl (2S)-2-{[9-(cyclohexylmethyl)-9H-carbazole-3-carbonyl]amino}-3,3-dimethylbutanoate

MDMB-CHMICA:

Methyl (2S)-2-{[1-(cyclohexylmethyl)-1H-indole-3-carbonyl]amino}-3,3-dimethylbutanoate

MDMB-CHMINACA:

Methyl (2S)-2-{[1-(cyclohexylmethyl)-1H-indazole-3-carbonyl]amino}-3,3-dimethylbutanoate

MDMB-FUBICA:

Methyl (2S)-2-({1-[(4-fluorophenyl)methyl]-1H-indole-3-carbonyl}amino)-3,3-dimethylbutanoate

MDMB-FUBINACA:

Methyl (2S)-2-({1-[(4-fluorophenyl)methyl]-1H-indazole-3-carbonyl}amino)-3,3-dimethylbutanoate

MDMB-PICA:

Methyl (2S)-3,3-dimethyl-2-[(1-pentyl-1H-indole-3-carbonyl)amino]butanoate

MDMB-PINACA:

Methyl (2S)-3,3-dimethyl-2-[(1-pentyl-1H-indazole-3-carbonyl)amino]butanoate

MEPIRAPIM:

(4-Methylpiperazin-1-yl)(1-pentyl-1H-indol-3-yl)methanone

MN-001:

(1-Pentyl-1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)methanone

MN-18:

N-(Naphthalen-1-yl)-1-pentyl-1H-indazole-3-carboxamide

MN-25:

7-Methoxy-1-[2-(morpholin-4-yl)ethyl]-N-[(1S,2S,4R)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl]-1H-indole-3-carboxamide

NMP-7:

(9-Pentyl-9H-carbazol-3-yl)(piperidin-1-yl)methanone

NNEI:

N-(Naphthalen-1-yl)-1-pentyl-1H-indazole-3-carboxamide

NNEI-2H-indazole:

N-(Naphthalen-1-yl)-2-pentyl-2H-indazole-3-carboxamide

NNL-3:

1-{[1-(5-Fluoropentyl)-1H-pyrrolo[2,3-b]pyridine-3-carbonyl]oxy}-1H-benzotriazole

N-Phenyl-SDB-006:

1-Pentyl-N-phenyl-1H-indole-3-carboxamide

Org-28611:

(S)-(1-(Cyclohexylmethyl)-7-methoxy-1H-indol-3-yl)(3,4-dimethylpiperazin-1-yl)methanone

PB-22:

Quinolin-8-yl 1-pentyl-1H-indole-3-carboxylate

PTI-1:

N-Ethyl-N-{[2-(1-pentyl-1H-indol-3-yl)-1,3-thiazol-4-yl]methyl}ethanamine

PTI-2:

N-(2-Methoxyethyl)-N-{[2-(1-pentyl-1H-indol-3-yl)-1,3-thiazol-4-yl]methyl}propan-2-amine

QMPSB:

Quinolin-8-yl 4-methyl-3-(piperidine-1-sulfonyl)benzoate

RCS-4-N-Me:

(4-Methoxyphenyl)(1-methyl-1H-indol-3-yl)methanone

SBD-005:

Naphthalen-1-yl 1-pentyl-1H-indazole-3-carboxylate

SBD-006:

N-Benzyl-1-pentyl-1H-indole-3-carboxamide

THJ-018:

(Naphthalen-1-yl)(1-pentyl-1H-indazol-3-yl)methanone

THJ-2201:

[1-(5-Fluoropentyl)-1H-indazol-3-yl](naphthalen-1-yl)methanone

TMCP-020:

(1-Heptyl-1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)methanone

UR-144:

(1-Pentyl-1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)methanone

XLR-11:

[1-(5-Fluoropentyl)-1H-indol-3-yl](2,2,3,3-tetramethylcyclopropyl)methanone

References

  • Adam J (2008) Indole derivatives. World Patent 2,008,101,995

    Google Scholar 

  • Adam JM, Cairns J, Caulfield W, Cowley P, Cumming I, Easson M, Edwards D, Ferguson M, Goodwin R, Jeremiah F, Kiyoi T, Mistry A, Moir E, Morphy R, Tierney J, York M, Baker J, Cottney JE, Houghton AK, Westwood PJ, Walker G (2010) Design, synthesis, and structure–activity relationships of indole-3-carboxamides as novel water soluble cannabinoid CB1 receptor agonists. Med Chem Commun 1:54

    CAS  Google Scholar 

  • Adamowicz P (2016) Fatal intoxication with synthetic cannabinoid MDMB-CHMICA. Forensic Sci Int 261:e5–e10

    CAS  PubMed  Google Scholar 

  • Adamowicz P, Zuba D, Sekula K (2013) Analysis of UR-144 and its pyrolysis product in blood and their metabolites in urine. Forensic Sci Int 233:320–327

    CAS  PubMed  Google Scholar 

  • Adams IB, Martin BR (1996) Cannabis: pharmacology and toxicology in animals and humans. Addiction 91:1585–1614

    CAS  PubMed  Google Scholar 

  • Adams AJ, Banister SD, Irizarry L, Trecki J, Schwartz M, Gerona R (2017) “Zombie” outbreak caused by the synthetic cannabinoid AMB-FUBINACA in New York. N Engl J Med 376:235–242

    CAS  PubMed  Google Scholar 

  • Adam-Worrall J, Morrison AJ, Wishart G, Kiyoi T, Mcarthur DR (2005) Preparation of (indol-3-yl)-heterocycle derivatives as agonists of the cannabinoid CB1 receptor. World Patent 2,005,089,754

    Google Scholar 

  • Andernach L, Pusch S, Weber C, Schollmeyer D, Munster-Muller S, Putz M, Opatz T (2016) Absolute configuration of the synthetic cannabinoid MDMB-CHMICA with its chemical characteristics in illegal products. Forensic Toxicol 34:344–352

    CAS  Google Scholar 

  • Angerer V, Jacobi S, Franz F, Auwarter V, Pietsch J (2017) Three fatalities associated with the synthetic cannabinoids 5F-ADB, 5F-PB-22, and AB-CHMINACA. Forensic Sci Int 281:e9–e15

    CAS  PubMed  Google Scholar 

  • Angerer V, Mogler L, Steitz JP, Bisel P, Hess C, Schoeder CT, Muller CE, Huppertz LM, Westphal F, Schaper J, Auwarter V (2018) Structural characterization and pharmacological evaluation of the new synthetic cannabinoid CUMYL-PEGACLONE. Drug Test Anal 10:597–603

    CAS  PubMed  Google Scholar 

  • Babi MA, Robinson CP, Maciel CB (2017) A spicy status: synthetic cannabinoid (spice) use and new-onset refractory status epilepticus-A case report and review of the literature. SAGE Open Med Case Rep 5:2050313X17745206

    PubMed  PubMed Central  Google Scholar 

  • Backberg M, Tworek L, Beck O, Helander A (2017) Analytically confirmed intoxications involving MDMB-CHMICA from the STRIDA project. J Med Toxicol 13:52–60

    PubMed  Google Scholar 

  • Banister SD, Wilkinson SM, Longworth M, Stuart J, Apetz N, English K, Brooker L, Goebel C, Hibbs DE, Glass M, Connor M, Mcgregor IS, Kassiou M (2013) The synthesis and pharmacological evaluation of adamantane-derived indoles: cannabimimetic drugs of abuse. ACS Chem Neurosci 4:1081–1092

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banister SD, Moir M, Stuart J, Kevin RC, Wood KE, Longworth M, Wilkinson SM, Beinat C, Buchanan AS, Glass M, Connor M, Mcgregor IS, Kassiou M (2015a) Pharmacology of indole and indazole synthetic cannabinoid designer drugs AB-FUBINACA, ADB-FUBINACA, AB-PINACA, ADB-PINACA, 5F-AB-PINACA, 5F-ADB-PINACA, ADBICA, and 5F-ADBICA. ACS Chem Neurosci 6:1546–1559

    CAS  PubMed  Google Scholar 

  • Banister SD, Stuart J, Kevin RC, Edington A, Longworth M, Wilkinson SM, Beinat C, Buchanan AS, Hibbs DE, Glass M, Connor M, Mcgregor IS, Kassiou M (2015b) Effects of bioisosteric fluorine in synthetic cannabinoid designer drugs JWH-018, AM-2201, UR-144, XLR-11, PB-22, 5F-PB-22, APICA, and STS-135. ACS Chem Neurosci 6:1445–1458

    CAS  PubMed  Google Scholar 

  • Banister SD, Longworth M, Kevin R, Sachdev S, Santiago M, Stuart J, Mack JB, Glass M, Mcgregor IS, Connor M, Kassiou M (2016) Pharmacology of valinate and tert-leucinate synthetic cannabinoids 5F-AMBICA, 5F-AMB, 5F-ADB, AMB-FUBINACA, MDMB-FUBINACA, MDMB-CHMICA, and their analogues. ACS Chem Neurosci 7:1241–1254

    CAS  PubMed  Google Scholar 

  • Behonick G, Shanks KG, Firchau DJ, Mathur G, Lynch CF, Nashelsky M, Jaskierny DJ, Meroueh C (2014) Four postmortem case reports with quantitative detection of the synthetic cannabinoid, 5F-PB-22. J Anal Toxicol 38:559–562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bell S, Nida C (2015) Pyrolysis of drugs of abuse: a comprehensive review. Drug Test Anal 7:445–456

    CAS  PubMed  Google Scholar 

  • Blaazer AR, Lange JH, Van Der Neut MA, Mulder A, Den Boon FS, Werkman TR, Kruse CG, Wadman WJ (2011) Novel indole and azaindole (pyrrolopyridine) cannabinoid (CB) receptor agonists: design, synthesis, structure-activity relationships, physicochemical properties and biological activity. Eur J Med Chem 46:5086–5098

    CAS  PubMed  Google Scholar 

  • Blakey K, Boyd S, Atkinson S, Wolf J, Slottje PM, Goodchild K, Mcgowan J (2016) Identification of the novel synthetic cannabimimetic 8-quinolinyl 4-methyl-3-(1-piperidinylsulfonyl)benzoate (QMPSB) and other designer drugs in herbal incense. Forensic Sci Int 260:40–53

    CAS  PubMed  Google Scholar 

  • Böhm H-J, Flohr A, Stahl M (2004) Scaffold hopping. Drug Discov Today Technol 1:217–224

    PubMed  Google Scholar 

  • Bovens M, Bissig C, Staeheli SN, Poetzsch M, Pfeiffer B, Kraemer T (2017) Structural characterization of the new synthetic cannabinoids CUMYL-PINACA, 5F-CUMYL-PINACA, CUMYL-4CN-BINACA, 5F-CUMYL-P7AICA and CUMYL-4CN-B7AICA. Forensic Sci Int 281:98–105

    CAS  PubMed  Google Scholar 

  • Bowden MJ, Williamson JPB (2014) Preparation of cannabinoid indole and indazole compounds for treating pain and nausea, stimulating appetite, and inducing a positive mood change. World Patent 2,014,167,530

    Google Scholar 

  • Brents LK, Reichard EE, Zimmerman SM, Moran JH, Fantegrossi WE, Prather PL (2011) Phase I hydroxylated metabolites of the K2 synthetic cannabinoid JWH-018 retain in vitro and in vivo cannabinoid 1 receptor affinity and activity. PLoS One 6:e21917

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buchler IP, Hayes MJ, Hedge SG, Hockerman SL, Jones DE, Kortum SW, Rico JG, Tenbrink RE, Wu KK (2009a) Indazole derivatives as CB1 receptor modulators and their preparation and use in the treatment of CB1-mediated diseases. World Patent 2,009,106,982

    Google Scholar 

  • Buchler IP, Hayes MJ, Hegde SG, Hockerman SL, Jones DE, Kortum SW, Rico JG, Tenbrink RE, Wu KK (2009b) Indazole derivatives as CB1 receptor modulators and their preparation and use in treatment of diseases. World Patent 2,009,106,980

    Google Scholar 

  • Buser GL, Gerona RR, Horowitz BZ, Vian KP, Troxell ML, Hendrickson RG, Houghton DC, Rozansky D, Su SW, Leman RF (2014) Acute kidney injury associated with smoking synthetic cannabinoid. Clin Toxicol 52:664–673

    CAS  Google Scholar 

  • Canazza I, Ossato A, Trapella C, Fantinati A, De Luca MA, Margiani G, Vincenzi F, Rimondo C, Di Rosa F, Gregori A, Varani K, Borea PA, Serpelloni G, Marti M (2016) Effect of the novel synthetic cannabinoids AKB48 and 5F-AKB48 on “tetrad”, sensorimotor, neurological and neurochemical responses in mice. In vitro and in vivo pharmacological studies. Psychopharmacology 233:3685–3709

    CAS  PubMed  Google Scholar 

  • Castaneto MS, Gorelick DA, Desrosiers NA, Hartman RL, Pirard S, Huestis MA (2014) Synthetic cannabinoids: epidemiology, pharmacodynamics, and clinical implications. Drug Alcohol Depend 144:12–41

    CAS  PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (2013) Acute kidney injury associated with synthetic cannabinoid use--multiple states, 2012. MMWR Morb Mortal Wkly Rep 62:93–98

    Google Scholar 

  • Chen BC, Chen P, Hynes J, Kiener P, Leftheris K, Longphre M, Norris DJ, Pandit CR, Spergel S, Tokarski J (2002) Cannabinoid receptor modulators, their processes of preparation, and use of cannabinoid receptor modulators in treating respiratory and non-respiratory diseases. World Patent 2,001,058,869

    Google Scholar 

  • Chimalakonda KC, Seely KA, Bratton SM, Brents LK, Moran CL, Endres GW, James LP, Hollenberg PF, Prather PL, Radominska-Pandya A, Moran JH (2012) Cytochrome P450-mediated oxidative metabolism of abused synthetic cannabinoids found in K2/Spice: identification of novel cannabinoid receptor ligands. Drug Metab Dispos 40:2174–2184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi H, Heo S, Kim E, Hwang BY, Lee C, Lee J (2013) Identification of (1-pentylindol-3-yl)-(2,2,3,3-tetramethylcyclopropyl)methanone and its 5-pentyl fluorinated analog in herbal incense seized for drug trafficking. Forensic Toxicol 31:86–92

    CAS  Google Scholar 

  • Chung H, Choi H, Heo S, Kim E, Lee J (2014) Synthetic cannabinoids abused in South Korea: drug identifications by the National Forensic Service from 2009 to June 2013. Forensic Toxicol 32:82–88

    CAS  Google Scholar 

  • Cohen K, Weinstein A (2018) The effects of cannabinoids on executive functions: evidence from cannabis and synthetic cannabinoids – a systematic review. Brain Sci 8:40

    PubMed Central  Google Scholar 

  • D’ambra TE, Eissenstat MA, Abt J, Ackerman JH, Bacon ER, Bell MR, Carabateas PM, Josef KA, Kumar V, Weaver JD, Arnold R, Casiano FM, Chippari SM, Haycock DA, Kuster JE, Luttinger DA, Stevenson JI, Ward SJ, Hill WA, Khanolkar A, Makriyannis A (1996) C-attached aminoalkylindoles: potent cannabinoid mimetics. Bioorg Med Chem Lett 6:17–22

    Google Scholar 

  • Diao X, Scheidweiler KB, Wohlfarth A, Pang S, Kronstrand R, Huestis MA (2016a) In vitro and in vivo human metabolism of synthetic cannabinoids FDU-PB-22 and FUB-PB-22. AAPS J 18:455–464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diao X, Scheidweiler KB, Wohlfarth A, Zhu M, Pang S, Huestis MA (2016b) Strategies to distinguish new synthetic cannabinoid FUBIMINA (BIM-2201) intake from its isomer THJ-2201: metabolism of FUBIMINA in human hepatocytes. Forensic Toxicol 34:256–267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diao X, Wohlfarth A, Pang S, Scheidweiler KB, Huestis MA (2016c) High-resolution mass spectrometry for characterizing the metabolism of synthetic cannabinoid THJ-018 and its 5-fluoro analog THJ-2201 after incubation in human hepatocytes. Clin Chem 62:157–169

    CAS  PubMed  Google Scholar 

  • Diao X, Carlier J, Zhu M, Pang S, Kronstrand R, Scheidweiler KB, Huestis MA (2017) In vitro and in vivo human metabolism of a new synthetic cannabinoid NM-2201 (CBL-2201). Forensic Toxicol 35:20–32

    CAS  PubMed  Google Scholar 

  • Dobaja M, Grenc D, Kozelj G, Brvar M (2017) Occupational transdermal poisoning with synthetic cannabinoid cumyl-PINACA. Clin Toxicol 55:193–195

    CAS  Google Scholar 

  • Doi T, Asada A, Takeda A, Tagami T, Katagi M, Kamata H, Sawabe Y (2016) Enantioseparation of the carboxamide-type synthetic cannabinoids N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(5-fluoropentyl)-1H-indazole-3-carboxamide and methyl [1-(5-fluoropentyl)-1H-indazole-3-carbonyl]-valinate in illicit herbal products. J Chromatogr A 1473:83–89

    CAS  PubMed  Google Scholar 

  • Doi T, Tagami T, Takeda A, Asada A, Sawabe Y (2018) Evaluation of carboxamide-type synthetic cannabinoids as CB1/CB2 receptor agonists: difference between the enantiomers. Forensic Toxicol 36:51–60

    CAS  PubMed  Google Scholar 

  • European Monitoring Centre for Drugs and Drug Addiction (2014) EMCDDA–Europol 2013 annual report on the implementation of Council Decision 2005/387/JHA, implementation reports. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • European Monitoring Centre for Drugs and Drug Addiction (2016) EMCDDA–Europol 2015 annual report on the implementation of Council Decision 2005/387/JHA, implementation reports. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • European Monitoring Centre for Drugs and Drug Addiction (2017) EMCDDA–Europol 2016 annual report on the implementation of Council Decision 2005/387/JHA, implementation reports. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Fantegrossi WE, Wilson CD, Berquist MD (2018) Pro-psychotic effects of synthetic cannabinoids: interactions with central dopamine, serotonin, and glutamate systems. Drug Metab Rev 50:65–73

    CAS  PubMed  Google Scholar 

  • Frost JM, Dart MJ, Tietje KR, Garrison TR, Grayson GK, Daza AV, El-Kouhen OF, Miller LN, Li L, Yao BB, Hsieh GC, Pai M, Zhu CZ, Chandran P, Meyer MD (2008) Indol-3-yl-tetramethylcyclopropyl ketones: effects of indole ring substitution on CB2 cannabinoid receptor activity. J Med Chem 51:1904–1912

    CAS  PubMed  Google Scholar 

  • Frost JM, Dart MJ, Tietje KR, Garrison TR, Grayson GK, Daza AV, El-Kouhen OF, Yao BB, Hsieh GC, Pai M, Zhu CZ, Chandran P, Meyer MD (2010) Indol-3-ylcycloalkyl ketones: effects of N1 substituted indole side chain variations on CB(2) cannabinoid receptor activity. J Med Chem 53:295–315

    CAS  PubMed  Google Scholar 

  • Gamage TF, Farquhar CE, Lefever TW, Marusich JA, Kevin RC, Mcgregor IS, Wiley JL, Thomas BF (2018) Molecular and behavioral pharmacological characterization of abused synthetic cannabinoids MMB- and MDMB-FUBINACA, MN-18, NNEI, CUMYL-PICA, and 5-fluoro-CUMYL-PICA. J Pharmacol Exp Ther. https://doi.org/10.1124/jpet.117.246983

    CAS  PubMed  Google Scholar 

  • Gatch MB, Forster MJ (2014) Delta9-tetrahydrocannabinol-like discriminative stimulus effects of compounds commonly found in K2/Spice. Behav Pharmacol 25:750–757

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gatch MB, Forster MJ (2015) Delta9-tetrahydrocannabinol-like effects of novel synthetic cannabinoids found on the gray market. Behav Pharmacol 26:460–468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gatch MB, Forster MJ (2016) Delta(9)-tetrahydrocannabinol-like effects of novel synthetic cannabinoids in mice and rats. Psychopharmacology 233:1901–1910

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gatch MB, Forster MJ (2018) Delta(9)-tetrahydrocannabinol-like discriminative stimulus effects of five novel synthetic cannabinoids in rats. Psychopharmacology 235:673–680

    CAS  PubMed  Google Scholar 

  • Girreser U, Rosner P, Vasilev A (2016) Structure elucidation of the designer drug N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-(5-fluoropentyl)-3-(4-fluorophenyl)-py razole-5-carboxamide and the relevance of predicted (13) C NMR shifts – a case study. Drug Test Anal 8:668–675

    CAS  PubMed  Google Scholar 

  • Grigoryev A, Kavanagh P, Melnik A, Savchuk S, Simonov A (2013) Gas and liquid chromatography-mass spectrometry detection of the urinary metabolites of UR-144 and its major pyrolysis product. J Anal Toxicol 37:265–276

    CAS  PubMed  Google Scholar 

  • Gugelmann H, Gerona R, Li C, Tsutaoka B, Olson KR, Lung D (2014) ‘Crazy Monkey’ poisons man and dog: human and canine seizures due to PB-22, a novel synthetic cannabinoid. Clin Toxicol 52:635–638

    CAS  Google Scholar 

  • Hartung B, Kauferstein S, Ritz-Timme S, Daldrup T (2014) Sudden unexpected death under acute influence of cannabis. Forensic Sci Int 237:e11–e13

    PubMed  Google Scholar 

  • Hess C, Schoeder CT, Pillaiyar T, Madea B, Muller CE (2016) Pharmacological evaluation of synthetic cannabinoids identified as constituents of spice. Forensic Toxicol 34:329–343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang J, Hwang J, Ganganna B, Song I, Heo MY, Ahn S-H, Lee J (2017) Metabolic and pharmacokinetic characterization of a new synthetic cannabinoid APINAC in rats. Forensic Toxicol 36:88–101

    Google Scholar 

  • Hynes J Jr, Leftheris K, Wu H, Pandit C, Chen P, Norris DJ, Chen B-C, Zhao R, Kiener PA, Chen X, Turk LA, Patil-Koota V, Gillooly KM, Shuster DJ, Mcintyre KW (2002) C-3 amido-indole cannabinoid receptor modulators. Bioorg Med Chem Lett 12:2399–2402

    CAS  PubMed  Google Scholar 

  • Ichikawa Y, Nakajima JI, Takahashi M, Uemura N, Yoshida M, Suzuki A, Suzuki J, Nakae D, Moriyasu T, Hosaka M (2016) Identification of (1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)methanone (DP-UR-144) in a herbal drug product that was commercially available in the Tokyo metropolitan area. Forensic Toxicol 35:146–152

    Google Scholar 

  • Jia W, Meng X, Qian Z, Hua Z, Li T, Liu C (2017) Identification of three cannabimimetic indazole and pyrazole derivatives, APINACA 2H-indazole analogue, AMPPPCA, and 5F-AMPPPCA. Drug Test Anal 9:248–255

    CAS  PubMed  Google Scholar 

  • Jung ME, Piizzi G (2005) gem-disubstituent effect: theoretical basis and synthetic applications. Chem Rev 105:1735–1766

    CAS  PubMed  Google Scholar 

  • Kaizaki-Mitsumoto A, Hataoka K, Funada M, Odanaka Y, Kumamoto H, Numazawa S (2017) Pyrolysis of UR-144, a synthetic cannabinoid, augments an affinity to human CB1 receptor and cannabimimetic effects in mice. J Toxicol Sci 42:335–341

    CAS  PubMed  Google Scholar 

  • Kavanagh P, Grigoryev A, Savchuk S, Mikhura I, Formanovsky A (2013) UR-144 in products sold via the Internet: identification of related compounds and characterization of pyrolysis products. Drug Test Anal 5:683–692

    CAS  PubMed  Google Scholar 

  • Kevin RC, Wood KE, Stuart J, Mitchell AJ, Moir M, Banister SD, Kassiou M, Mcgregor IS (2017) Acute and residual effects in adolescent rats resulting from exposure to the novel synthetic cannabinoids AB-PINACA and AB-FUBINACA. J Psychopharmacol 31:757–769

    CAS  PubMed  Google Scholar 

  • Kneisel S, Bisel P, Brecht V, Broecker S, Müller M, Auwärter V (2012) Identification of the cannabimimetic AM-1220 and its azepane isomer (N-methylazepan-3-yl)-3-(1-naphthoyl)indole in a research chemical and several herbal mixtures. Forensic Toxicol 30:126–134

    CAS  Google Scholar 

  • Kondrasenko AA, Goncharov EV, Dugaev KP, Rubaylo AI (2015) CBL-2201. Report on a new designer drug: napht-1-yl 1-(5-fluoropentyl)-1H-indole-3-carboxylate. Forensic Sci Int 257:209–213

    CAS  PubMed  Google Scholar 

  • Lambeng N, Lebon F, Christophe B, Burton M, De Ryck M, Quéré L (2007) Arylsulfonamides as a new class of cannabinoid CB1 receptor ligands: identification of a lead and initial SAR studies. Bioorg Med Chem Lett 17:272–277

    CAS  PubMed  Google Scholar 

  • Lamy FR, Daniulaityte R, Nahhas RW, Barratt MJ, Smith AG, Sheth A, Martins SS, Boyer EW, Carlson RG (2017) Increases in synthetic cannabinoids-related harms: results from a longitudinal web-based content analysis. Int J Drug Policy 44:121–129

    PubMed  PubMed Central  Google Scholar 

  • Lange JH, Attali A, van der Neut MA, Wals HC, Mulder A, Zilaout H, Duursma A, van Aken HH, van Vliet BJ (2010) Two distinct classes of novel pyrazolinecarboxamides as potent cannabinoid CB1 receptor agonists. Bioorg Med Chem Lett 20:4992–4998

    CAS  PubMed  Google Scholar 

  • Langer N, Lindigkeit R, Schiebel HM, Ernst L, Beuerle T (2014) Identification and quantification of synthetic cannabinoids in ‘spice-like’ herbal mixtures: a snapshot of the German situation in the autumn of 2012. Drug Test Anal 6:59–71

    CAS  PubMed  Google Scholar 

  • Langer N, Lindigkeit R, Schiebel HM, Papke U, Ernst L, Beuerle T (2016) Identification and quantification of synthetic cannabinoids in “spice-like” herbal mixtures: update of the German situation for the spring of 2016. Forensic Sci Int 269:31–41

    CAS  PubMed  Google Scholar 

  • Lee JH, Park HN, Leem T-S, Jeon J-H, Cho S, Lee J, Baek SY (2016) Identification of new synthetic cannabinoid analogue APINAC (adamantan-1-yl 1-pentyl-1H-indazole-3-carboxylate) with other synthetic cannabinoid MDMB(N)-Bz-F in illegal products. Forensic Toxicol 35:45–55

    Google Scholar 

  • Liu C, Jia W, Hua Z, Qian Z (2017) Identification and analytical characterization of six synthetic cannabinoids NNL-3, 5F-NPB-22-7N, 5F-AKB-48-7N, 5F-EDMB-PINACA, EMB-FUBINACA, and EG-018. Drug Test Anal 9:1251–1261

    CAS  PubMed  Google Scholar 

  • Longworth M, Banister SD, Mack JB, Glass M, Connor M, Kassiou M (2016) The 2-alkyl-2H-indazole regioisomers of synthetic cannabinoids AB-CHMINACA, AB-FUBINACA, AB-PINACA, and 5F-AB-PINACA are possible manufacturing impurities with cannabimimetic activities. Forensic Toxicol 34:286–303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Longworth M, Banister SD, Boyd R, Kevin RC, Connor M, Mcgregor IS, Kassiou M (2017a) Pharmacology of cumyl-carboxamide synthetic cannabinoid new psychoactive substances (NPS) CUMYL-BICA, CUMYL-PICA, CUMYL-5F-PICA, CUMYL-5F-PINACA, and their analogues. ACS Chem Neurosci 8:2159–2167

    CAS  PubMed  Google Scholar 

  • Longworth M, Connor M, Banister SD, Kassiou M (2017b) Synthesis and pharmacological profiling of the metabolites of synthetic cannabinoid drugs APICA, STS-135, ADB-PINACA, and 5F-ADB-PINACA. ACS Chem Neurosci 8:1673–1680

    CAS  PubMed  Google Scholar 

  • Louis A, Peterson BL, Couper FJ (2014) XLR-11 and UR-144 in Washington state and state of Alaska driving cases. J Anal Toxicol 38:563–568

    CAS  PubMed  Google Scholar 

  • Maeda H, Nagashima E, Hayashi YK, Kikura-Hanajiri R, Yoshida K-I (2018) MDMB-CHMICA induces thrashing behavior, bradycardia, and slow pressor response in a CB1- and CB2-receptor-dependent manner in conscious rats. Forensic Toxicol. https://doi.org/10.1007/s11419-018-0405-1

    CAS  Google Scholar 

  • Makriyannis A, Liu Q (2003) Heteroindanes: a new class of potent cannabimimetic ligands. World Patent 2,003,035,005

    Google Scholar 

  • Mclaughlin G, Morris N, Kavanagh PV, Power JD, Twamley B, O’brien J, Talbot B, Dowling G, Brandt SD (2016) The synthesis and characterization of the ‘research chemical’ N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(cyclohexylmethyl)-3-(4-fluorophenyl)-1H-p yrazole-5-carboxamide (3,5-AB-CHMFUPPYCA) and differentiation from its 5,3-regioisomer. Drug Test Anal 8:920–929

    CAS  PubMed  Google Scholar 

  • Moloney GP, Robertson AD (2002) 3-Oxadiazol-5-yl-1-aminoalkyl-1H-indole derivatives. World Patent 2,002,036,590

    Google Scholar 

  • Moloney GP, Angus JA, Robertson AD, Stoermer MJ, Robinson M, Wright CE, Mcrae K, Christopoulos A (2008) Synthesis and cannabinoid activity of 1-substituted-indole-3-oxadiazole derivatives: novel agonists for the CB1 receptor. Eur J Med Chem 43:513–539

    CAS  PubMed  Google Scholar 

  • Monte AA, Bronstein AC, Cao DJ, Heard KJ, Hoppe JA, Hoyte CO, Iwanicki JL, Lavonas EJ (2014) An outbreak of exposure to a novel synthetic cannabinoid. N Engl J Med 370:389–390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison AJ, Adam JM, Baker JA, Campbell RA, Clark JK, Cottney JE, Deehan M, Easson A-M, Fields R, Francis S, Jeremiah F, Keddie N, Kiyoi T, Mcarthur DR, Meyer K, Ratcliffe PD, Schulz J, Wishart G, Yoshiizumi K (2011) Design, synthesis, and structure–activity relationships of indole-3-heterocycles as agonists of the CB1 receptor. Bioorg Med Chem Lett 21:506–509

    CAS  PubMed  Google Scholar 

  • Nacca N, Vatti D, Sullivan R, Sud P, Su M, Marraffa J (2013) The synthetic cannabinoid withdrawal syndrome. J Addict Med 7:296–298

    CAS  PubMed  Google Scholar 

  • Nakajima JI, Takahashi M, Seto T, Kanai C, Suzuki J, Yoshida M, Uemura N, Hamano T (2013) Analysis of azepane isomers of AM-2233 and AM-1220, and detection of an inhibitor of fatty acid amide hydrolase [3′-(aminocarbonyl)(1,1′-biphenyl)-3-yl]-cyclohexylcarbamate (URB597) obtained as designer drugs in the Tokyo area. Forensic Toxicol 31:76–85

    CAS  Google Scholar 

  • Nakajima JI, Takahashi M, Uemura N, Seto T, Fukaya H, Suzuki J, Yoshida M, Kusano M, Nakayama H, Zaitsu K, Ishii A, Moriyasu T, Nakae D (2014) Identification of N,N-bis(1-pentylindol-3-yl-carboxy)naphthylamine (BiPICANA) found in an herbal blend product in the Tokyo metropolitan area and its cannabimimetic effects evaluated by in vitro [35S]GTPγS binding assays. Forensic Toxicol 33:84–92

    Google Scholar 

  • Pagé D, Balaux E, Boisvert L, Liu Z, Milburn C, Tremblay M, Wei Z, Woo S, Luo X, Cheng Y-X, Yang H, Srivastava S, Zhou F, Brown W, Tomaszewski M, Walpole C, Hodzic L, St-Onge S, Godbout C, Salois D, Payza K (2008) Novel benzimidazole derivatives as selective CB2 agonists. Bioorg Med Chem Lett 18:3695–3700

    PubMed  Google Scholar 

  • Patani GA, Lavoie EJ (1996) Bioisosterism: a rational approach in drug design. Chem Rev 96:3147–3176

    CAS  PubMed  Google Scholar 

  • Pertwee RG (2005) Pharmacological actions of cannabinoids. Handb Exp Pharmacol 168:1–51

    CAS  Google Scholar 

  • Petrov RR, Knight L, Chen SR, Wager-Miller J, Mcdaniel SW, Diaz F, Barth F, Pan HL, Mackie K, Cavasotto CN, Diaz P (2013) Mastering tricyclic ring systems for desirable functional cannabinoid activity. Eur J Med Chem 69:881–907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajasekaran M, Brents LK, Franks LN, Moran JH, Prather PL (2013) Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors. Toxicol Appl Pharmacol 269:100–108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ratcliffe P, Adam JM, Baker J, Bursi R, Campbell R, Clark JK, Cottney JE, Deehan M, Easson A-M, Ecker D, Edwards D, Epemolu O, Evans L, Fields R, Francis S, Harradine P, Jeremiah F, Kiyoi T, Mcarthur D, Morrison A, Passier P, Pick J, Schnabel PG, Schulz J, Steinbrede H, Walker G, Westwood P, Wishart G, Haes JUD (2011) Design, synthesis and structure–activity relationships of (indo-3-yl) heterocyclic derivatives as agonists of the CB1 receptor. Discovery of a clinical candidate. Bioorg Med Chem Lett 21:2541–2546

    CAS  PubMed  Google Scholar 

  • Savchuk S, Appolonova S, Pechnikov A, Rizvanova L, Shestakova K, Tagliaro F (2017) In vivo metabolism of the new synthetic cannabinoid APINAC in rats by GC–MS and LC–QTOF-MS. Forensic Toxicol 35:359–368

    CAS  Google Scholar 

  • Schep LJ, Slaughter RJ, Hudson S, Place R, Watts M (2015) Delayed seizure-like activity following analytically confirmed use of previously unreported synthetic cannabinoid analogues. Hum Exp Toxicol 34:557–560

    CAS  PubMed  Google Scholar 

  • Schindler CW, Gramling BR, Justinova Z, Thorndike EB, Baumann MH (2017) Synthetic cannabinoids found in “spice” products alter body temperature and cardiovascular parameters in conscious male rats. Drug Alcohol Depend 179:387–394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiber S, Bader M, Lenchinski T, Meningher I, Rubovitch V, Katz Y, Cohen E, Gabet Y, Rotenberg M, Wolf EU, Pick CG (2018) Functional effects of synthetic cannabinoids versus delta(9)-THC in mice on body temperature, nociceptive threshold, anxiety, cognition, locomotor/exploratory parameters and depression. Addict Biol. https://doi.org/10.1111/adb.12606

  • Shanks KG, Behonick GS, Dahn T, Terrell A (2013) Identification of novel third-generation synthetic cannabinoids in products by ultra-performance liquid chromatography and time-of-flight mass spectrometry. J Anal Toxicol 37:517–525

    CAS  PubMed  Google Scholar 

  • Shanks KG, Winston D, Heidingsfelder J, Behonick G (2015) Case reports of synthetic cannabinoid XLR-11 associated fatalities. Forensic Sci Int 252:e6–e9

    CAS  PubMed  Google Scholar 

  • Shanks KG, Clark W, Behonick G (2016) Death associated with the use of the synthetic cannabinoid ADB-FUBINACA. J Anal Toxicol 40:236–239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shevyrin V, Melkozerov V, Nevero A, Eltsov O, Morzherin Y, Shafran Y (2013a) Identification and analytical properties of new synthetic cannabimimetics bearing 2,2,3,3-tetramethylcyclopropanecarbonyl moiety. Forensic Sci Int 226:62–73

    CAS  PubMed  Google Scholar 

  • Shevyrin V, Melkozerov V, Nevero A, Eltsov O, Shafran Y (2013b) Analytical characterization of some synthetic cannabinoids, derivatives of indole-3-carboxylic acid. Forensic Sci Int 232:1–10

    CAS  PubMed  Google Scholar 

  • Shevyrin V, Melkozerov V, Nevero A, Eltsov O, Morzherin Y, Shafran Y (2014) 3-Naphthoylindazoles and 2-naphthoylbenzoimidazoles as novel chemical groups of synthetic cannabinoids: chemical structure elucidation, analytical characteristics and identification of the first representatives in smoke mixtures. Forensic Sci Int 242:72–80

    CAS  PubMed  Google Scholar 

  • Shevyrin V, Melkozerov V, Eltsov O, Shafran Y, Morzherin Y (2016a) Synthetic cannabinoid 3-benzyl-5-[1-(2-pyrrolidin-1-ylethyl)-1H-indol-3-yl]-1,2,4-oxadiazole. The first detection in illicit market of new psychoactive substances. Forensic Sci Int 259:95–100

    CAS  PubMed  Google Scholar 

  • Shevyrin V, Melkozerov V, Endres GW, Shafran Y, Morzherin Y (2016b) On a new cannabinoid classification system: a sight on the illegal market of novel psychoactive substances. Cannabis Cannabinoid Res 1:186–194

    Google Scholar 

  • Silva JP, Carmo H, Carvalho F (2018) The synthetic cannabinoid XLR-11 induces in vitro nephrotoxicity by impairment of endocannabinoid-mediated regulation of mitochondrial function homeostasis and triggering of apoptosis. Toxicol Lett 287:59–69

    CAS  PubMed  Google Scholar 

  • Simolka K, Lindigkeit R, Schiebel H-M, Papke U, Ernst L, Beuerle T (2012) Analysis of synthetic cannabinoids in “spice-like” herbal highs: snapshot of the German market in summer 2011. Anal Bioanal Chem 404:157–171

    CAS  PubMed  Google Scholar 

  • Sobolevsky T, Prasolov I, Rodchenkov G (2012) Detection of urinary metabolites of AM-2201 and UR-144, two novel synthetic cannabinoids. Drug Test Anal 4:745–753

    CAS  PubMed  Google Scholar 

  • Springer YP, Gerona R, Scheunemann E, Shafer SL, Lin T, Banister SD, Cooper MP, Castrodale LJ, Levy M, Butler JC, Mclaughlin JB (2016) Increase in adverse reactions associated with use of synthetic cannabinoids – Anchorage, Alaska, 2015-2016. MMWR Morb Mortal Wkly Rep 65:1108–1111

    PubMed  Google Scholar 

  • Surmont T, Daníelsson HV, Hughes B, Sedefov R (2017) The “Spice” trade. Int Crim Just Rev: 105756771774534

    Google Scholar 

  • Tai S, Fantegrossi WE (2017) Pharmacological and toxicologicaleffects of synthetic cannabinoids and their metabolites. In: Baumann MH, Glennon RA, Wiley JL (eds) Neuropharmacology of new psychoactive substances (NPS): the science behind the headlines. Springer, Cham

    Google Scholar 

  • Tait RJ, Caldicott D, Mountain D, Hill SL, Lenton S (2016) A systematic review of adverse events arising from the use of synthetic cannabinoids and their associated treatment. Clin Toxicol 54:1–13

    CAS  Google Scholar 

  • Talele TT (2018) Natural-products-inspired use of the gem-dimethyl group in medicinal chemistry. J Med Chem 61:2166–2210

    CAS  PubMed  Google Scholar 

  • Tapp L, Ramsey JG, Wen A, Gerona R (2017) Synthetic cannabinoid and mitragynine exposure of law enforcement agents during the raid of an illegal laboratory – Nevada, 2014. MMWR Morb Mortal Wkly Rep 66:1291–1294

    PubMed  PubMed Central  Google Scholar 

  • Theunissen EL, Hutten N, Mason NL, Toennes SW, Kuypers KPC, De Sousa Fernandes Perna EB, Ramaekers JG (2018) Neurocognition and subjective experience following acute doses of the synthetic cannabinoid JWH-018: a phase 1, placebo-controlled, pilot study. Br J Pharmacol 175:18–28

    CAS  PubMed  Google Scholar 

  • Thomas BF, Lefever TW, Cortes RA, Grabenauer M, Kovach AL, Cox AO, Patel PR, Pollard GT, Marusich JA, Kevin RC, Gamage TF, Wiley JL (2017) Thermolytic degradation of synthetic cannabinoids: chemical exposures and pharmacological consequences. J Pharmacol Exp Ther 361:162–171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thornton SL, Wood C, Friesen MW, Gerona RR (2013) Synthetic cannabinoid use associated with acute kidney injury. Clin Toxicol 51:189–190

    Google Scholar 

  • Trecki J, Gerona RR, Schwartz MD (2015) Synthetic cannabinoid-related illnesses and deaths. N Engl J Med 373:103–107

    CAS  PubMed  Google Scholar 

  • Tsujikawa K, Yamamuro T, Kuwayama K, Kanamori T, Iwata YT, Inoue H (2013) Thermal degradation of a new synthetic cannabinoid QUPIC during analysis by gas chromatography–mass spectrometry. Forensic Toxicol 32:201–207

    Google Scholar 

  • Tyndall JA, Gerona R, De Portu G, Trecki J, Elie MC, Lucas J, Slish J, Rand K, Bazydlo L, Holder M, Ryan MF, Myers P, Iovine N, Plourde M, Weeks E, Hanley JR, Endres G, St Germaine D, Dobrowolski PJ, Schwartz M (2015) An outbreak of acute delirium from exposure to the synthetic cannabinoid AB-CHMINACA. Clin Toxicol 53:950–956

    CAS  Google Scholar 

  • Uchiyama N, Kawamura M, Kikura-Hanajiri R, Goda Y (2012) Identification of two new-type synthetic cannabinoids, N-(1-adamantyl)-1-pentyl-1H-indole-3-carboxamide (APICA) and N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide (APINACA), and detection of five synthetic cannabinoids, AM-1220, AM-2233, AM-1241, CB-13 (CRA-13), and AM-1248, as designer drugs in illegal products. Forensic Toxicol 30:114–125

    CAS  Google Scholar 

  • Uchiyama N, Kawamura M, Kikura-Hanajiri R, Goda Y (2013a) URB-754: a new class of designer drug and 12 synthetic cannabinoids detected in illegal products. Forensic Sci Int 227:21–32

    CAS  PubMed  Google Scholar 

  • Uchiyama N, Matsuda S, Kawamura M, Kikura-Hanajiri R, Goda Y (2013b) Two new-type cannabimimetic quinolinyl carboxylates, QUPIC and QUCHIC, two new cannabimimetic carboxamide derivatives, ADB-FUBINACA and ADBICA, and five synthetic cannabinoids detected with a thiophene derivative α-PVT and an opioid receptor agonist AH-7921 identified in illegal products. Forensic Toxicol 31:223–240

    CAS  Google Scholar 

  • Uchiyama N, Matsuda S, Kawamura M, Kikura-Hanajiri R, Goda Y (2014a) Identification of two new-type designer drugs, piperazine derivative MT-45 (I-C6) and synthetic peptide Noopept (GVS-111), with synthetic cannabinoid A-834735, cathinone derivative 4-methoxy-α-PVP, and phenethylamine derivative 4-methylbuphedrine from illegal products. Forensic Toxicol 32:9–18

    CAS  Google Scholar 

  • Uchiyama N, Matsuda S, Kawamura M, Shimokawa Y, Kikura-Hanajiri R, Aritake K, Urade Y, Goda Y (2014b) Characterization of four new designer drugs, 5-chloro-NNEI, NNEI indazole analog, alpha-PHPP and alpha-POP, with 11 newly distributed designer drugs in illegal products. Forensic Sci Int 243:1–13

    CAS  PubMed  Google Scholar 

  • Uchiyama N, Shimokawa Y, Kawamura M, Kikura-Hanajiri R, Hakamatsuka T (2014c) Chemical analysis of a benzofuran derivative, 2-(2-ethylaminopropyl)benzofuran (2-EAPB), eight synthetic cannabinoids, five cathinone derivatives, and five other designer drugs newly detected in illegal products. Forensic Toxicol 32:266–281

    CAS  Google Scholar 

  • Uchiyama N, Shimokawa Y, Matsuda S, Kawamura M, Kikura-Hanajiri R, Goda Y (2014d) Two new synthetic cannabinoids, AM-2201 benzimidazole analog (FUBIMINA) and (4-methylpiperazin-1-yl)(1-pentyl-1H-indol-3-yl)methanone (MEPIRAPIM), and three phenethylamine derivatives, 25H-NBOMe 3,4,5-trimethoxybenzyl analog, 25B-NBOMe, and 2C-N-NBOMe, identified in illegal products. Forensic Toxicol 32:105–115

    CAS  Google Scholar 

  • Uchiyama N, Asakawa K, Kikura-Hanajiri R, Tsutsumi T, Hakamatsuka T (2015a) A new pyrazole-carboxamide type synthetic cannabinoid AB-CHFUPYCA [N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(cyclohexylmethyl)-3-(4-fluorophenyl)-1H-pyrazole-5-carboxamide] identified in illegal products. Forensic Toxicol 33:367–373

    CAS  Google Scholar 

  • Uchiyama N, Shimokawa Y, Kikura-Hanajiri R, Demizu Y, Goda Y, Hakamatsuka T (2015b) A synthetic cannabinoid FDU-NNEI, two 2-indazole isomers of synthetic cannabinoids AB-CHMINACA and NNEI indazole analog (MN-18), a phenethylamine derivative -OH-EDMA, and a cathinone derivative dimethoxy-alpha-PHP, newly identified in illegal products. Forensic Toxicol 33:244–259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uemura N, Fukaya H, Kanai C, Yoshida M, Nakajima JI, Takahashi M, Suzuki J, Moriyasu T, Nakae D (2014) Identification of a synthetic cannabinoid A-836339 as a novel compound found in a product. Forensic Toxicol 32:45–50

    CAS  Google Scholar 

  • Usui K, Fujita Y, Kamijo Y, Kokaji T, Funayama M (2018) Identification of 5-Fluoro ADB in human whole blood in four death cases. J Anal Toxicol 42:e21–e25

    CAS  PubMed  Google Scholar 

  • Van Hout MC, Hearne E (2016) User experiences of development of dependence on the synthetic cannabinoids, 5f-AKB48 and 5F-PB-22, and subsequent withdrawal syndromes. Int J Ment Heal Addict 15:565–579

    Google Scholar 

  • Vineis P, Pirastu R (1997) Aromatic amines and cancer. Cancer Causes Control 8:346–355

    CAS  PubMed  Google Scholar 

  • Weber C, Pusch S, Schollmeyer D, Münster-Müller S, Pütz M, Opatz T (2016) Characterization of the synthetic cannabinoid MDMB-CHMCZCA. Beilstein J Org Chem 12:2808–2815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Westphal F, Sonnichsen FD, Knecht S, Auwarter V, Huppertz L (2015) Two thiazolylindoles and a benzimidazole: novel compounds on the designer drug market with potential cannabinoid receptor activity. Forensic Sci Int 249:133–147

    CAS  PubMed  Google Scholar 

  • Wiley JL, Marusich JA, Lefever TW, Grabenauer M, Moore KN, Thomas BF (2013) Cannabinoids in disguise: delta9-tetrahydrocannabinol-like effects of tetramethylcyclopropyl ketone indoles. Neuropharmacology 75:145–154

    CAS  PubMed  Google Scholar 

  • Wiley JL, Marusich JA, Lefever TW, Antonazzo KR, Wallgren MT, Cortes RA, Patel PR, Grabenauer M, Moore KN, Thomas BF (2015) AB-CHMINACA, AB-PINACA, and FUBIMINA: affinity and potency of novel synthetic cannabinoids in producing delta9-tetrahydrocannabinol-like effects in mice. J Pharmacol Exp Ther 354:328–339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiley JL, Lefever TW, Marusich JA, Grabenauer M, Moore KN, Huffman JW, Thomas BF (2016) Evaluation of first generation synthetic cannabinoids on binding at non-cannabinoid receptors and in a battery of in vivo assays in mice. Neuropharmacology 110:143–153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willis PG, Pavlova OA, Chefer SI, Vaupel DB, Mukhin AG, Horti AG (2005) Synthesis and structure-activity relationship of a novel series of aminoalkylindoles with potential for imaging the neuronal cannabinoid receptor by positron emission tomography. J Med Chem 48:5813–5822

    CAS  PubMed  Google Scholar 

  • Wohlfarth A, Gandhi AS, Pang S, Zhu M, Scheidweiler KB, Huestis MA (2014) Metabolism of synthetic cannabinoids PB-22 and its 5-fluoro analog, 5F-PB-22, by human hepatocyte incubation and high-resolution mass spectrometry. Anal Bioanal Chem 406:1763–1780

    CAS  PubMed  Google Scholar 

  • Wrobleski ST, Chen P, Hynes J, Lin S, Norris DJ, Pandit CR, Spergel S, Wu H, Tokarski JS, Chen X, Gillooly KM, Kiener PA, Mcintyre KW, Patil-Koota V, Shuster DJ, Turk LA, Yang G, Leftheris K (2003) Rational design and synthesis of an orally active indolopyridone as a novel conformationally constrained cannabinoid ligand possessing antiinflammatory properties. J Med Chem 46:2110–2116

    CAS  PubMed  Google Scholar 

  • Wurita A, Hasegawa K, Minakata K, Gonmori K, Nozawa H, Yamagishi I, Watanabe K, Suzuki O (2015) Identification and quantitation of 5-fluoro-ADB-PINACA and MAB-CHMINACA in dubious herbal products. Forensic Toxicol 33:213–220

    CAS  Google Scholar 

  • Yao BB, Hsieh G, Daza AV, Fan Y, Grayson GK, Garrison TR, El Kouhen O, Hooker BA, Pai M, Wensink EJ, Salyers AK, Chandran P, Zhu CZ, Zhong C, Ryther K, Gallagher ME, Chin CL, Tovcimak AE, Hradil VP, Fox GB, Dart MJ, Honore P, Meyer MD (2009) Characterization of a cannabinoid CB2 receptor-selective agonist, A-836339 [2,2,3,3-tetramethyl-cyclopropanecarboxylic acid [3-(2-methoxy-ethyl)-4,5-dimethyl-3H-thiazol-(2Z)-ylidene]-amide], using in vitro pharmacological assays, in vivo pain models, and pharmacological magnetic resonance imaging. J Pharmacol Exp Ther 328:141–151

    CAS  PubMed  Google Scholar 

  • Yildirim M, Wals HC, Van VBJ, Lange JHM (2009) 4,5-dihydro-(1h)-pyrazole derivatives as cannabinoid cb1 receptor modulators. World Patent 2,008,152,086

    Google Scholar 

  • You H, Gadotti VM, Petrov RR, Zamponi GW, Diaz P (2011) Functional characterization and analgesic effects of mixed cannabinoid receptor/T-type channel ligands. Mol Pain 7:89

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zanda MT, Fattore L (2018) Old and new synthetic cannabinoids: lessons from animal models. Drug Metab Rev 50:54–64

    CAS  PubMed  Google Scholar 

  • Zuba D, Geppert B, Sekuła K, Żaba C (2013) [1-(Tetrahydropyran-4-ylmethyl)-1H-indol-3-yl]-(2,2,3,3-tetramethylcyclopropyl)methanone: a new synthetic cannabinoid identified on the drug market. Forensic Toxicol 31:281–291

    CAS  Google Scholar 

  • Zuurman L, Passier PC, De Kam M, Kleijn HJ, Cohen AF, Van Gerven JM (2009) Pharmacodynamic and pharmacokinetic effects of the intravenously administered CB1 receptor agonist Org 28611 in healthy male volunteers. J Psychopharmacol 23:633–644

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel D. Banister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banister, S.D., Connor, M. (2018). The Chemistry and Pharmacology of Synthetic Cannabinoid Receptor Agonist New Psychoactive Substances: Evolution. In: Maurer, H., Brandt, S. (eds) New Psychoactive Substances . Handbook of Experimental Pharmacology, vol 252. Springer, Cham. https://doi.org/10.1007/164_2018_144

Download citation

Publish with us

Policies and ethics