Skip to main content

Botulinum Neurotoxins: Mechanism of Action

  • Chapter
  • First Online:
Botulinum Toxin Therapy

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 263))

Abstract

Botulinum neurotoxins (BoNTs) are a growing family of bacterial protein toxins that cause botulism, a rare but often fatal animal and human disease. They are the most potent toxins known owing to their molecular architecture, which underlies their mechanism of action. BoNTs target peripheral nerve terminals by a unique mode of binding and enter into their cytosol where they cleave SNARE proteins, thus inhibiting the neurotransmitter release. The specificity and rapidity of binding, which limits the anatomical area of its neuroparalytic action, and its reversible action make BoNT a valuable pharmaceutical to treat neurological and non-neurological diseases determined by hyperactivity of cholinergic nerve terminals. This review reports the progress on our understanding of how BoNTs cause nerve paralysis highlighting the different steps of their molecular mechanism of action as key aspects to explain their extreme toxicity but also their unique pharmacological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antonucci F, Rossi C, Gianfranceschi L, Rossetto O, Caleo M (2008) Long-distance retrograde effects of botulinum neurotoxin A. J Neurosci 28(14):3689–3696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Hauer J, Layton M, Working Group on Civilian Biodefense et al (2001) Botulinum toxin as a biological weapon: medical and public health management. JAMA 285:1059–1070

    Article  CAS  PubMed  Google Scholar 

  • Bernard C (1866) Leçons sur les propriétés des tissus vivants. Paris, reproduced by Lighting Source UK, Milton Keynes, UK

    Google Scholar 

  • Bhattacharjee Y (2011) Biosecurity. Panel selects most dangerous select agents. Science 332:1491–1492

    Article  CAS  PubMed  Google Scholar 

  • Brunger AT, Rummel A (2009) Receptor and substrate interactions of clostridial neurotoxins. Toxicon 54(5):550–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carli L, Montecucco C, Rossetto O (2009) Assay of diffusion of different botulinum neurotoxin type A formulations injected in the mouse leg. Muscle Nerve 40:374–380

    Article  CAS  PubMed  Google Scholar 

  • Chanaday NL, Cousin MA, Milosevic I, Watanabe S, Morgan JR (2019) The synaptic vesicle cycle revisited: new insights into the modes and mechanisms. J Neurosci 39(42):8209–8216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatham-Stephens K, Fleck-Derderian S, Johnson SD, Sobel J, Rao AK, Meaney-Delman D (2018) Clinical features of foodborne and wound Botulism: a systematic review of the literature, 1932–2015. Clin Infect Dis 66(1):S11–S16

    Article  Google Scholar 

  • Colasante C, Rossetto O, Morbiato L, Pirazzini M, Molgó J, Montecucco C (2013) Botulinum neurotoxin type A is internalized and translocated from small synaptic vesicles at the neuromuscular junction. Mol Neurobiol 48:120–127

    Article  CAS  PubMed  Google Scholar 

  • Dong M, Masuyer G, Stenmark P (2019) Botulinum and tetanus neurotoxins. Annu Rev Biochem 88:811–837

    Article  CAS  PubMed  Google Scholar 

  • Doxey AC, Mansfield MJ, Montecucco C (2018) Discovery of novel bacterial toxins by genomics and computational biology. Toxicon 147:2–12

    Article  CAS  PubMed  Google Scholar 

  • Doxey AC, Mansfield MJ, Lobb B (2019) Exploring the evolution of virulence factors through Bioinformatic data mining. mSystems 4(3):e00162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dressler D (2012) Clinical applications of botulinum toxin. Curr Opin Microbiol 15:325–336

    Article  PubMed  Google Scholar 

  • Eleopra R, Tugnoli V, Quatrale R, Rossetto O, Montecucco C (2004) Different types of botulinum toxin in humans. Mov Disord 19(Suppl 8):S53–S59

    Article  PubMed  Google Scholar 

  • Erbguth FJ (2004) Historical notes on botulism, Clostridium botulinum, botulinum toxin, and the idea of the therapeutic use of the toxin. Mov Disord 19(Suppl 8):S2–S6

    Article  PubMed  Google Scholar 

  • Fleck-Derderian S, Shankar M, Rao AK, Chatham-Stephens K, Adjei S, Sobel J, Meltzer MI, Meaney-Delman D, Pillai SK (2017) The epidemiology of foodborne Botulism outbreaks: a systematic review. Clin Infect Dis 66(suppl_1):S73–S81

    Article  PubMed  CAS  Google Scholar 

  • Fogolari F, Tosatto SC, Muraro L, Montecucco C (2009) Electric dipole reorientation in the interaction of botulinum neurotoxins with neuronal membranes. FEBS Lett 583(14):2321–2325

    Article  CAS  PubMed  Google Scholar 

  • Gart MS, Gutowski KA (2016) Overview of Botulinum toxins for aesthetic uses. Clin Plast Surg 43(3):459–471

    Article  PubMed  Google Scholar 

  • Gu S, Rumpel S, Zhou J, Strotmeier J, Bigalke H, Perry K, Shoemaker CB, Rummel A, Jin R (2012) Botulinum neurotoxin is shielded by NTNHA in an interlocked complex. Science 335(6071):977–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harper CB, Papadopulos A, Martin S, Matthews DR, Morgan GP, Nguyen TH, Wang T, Nair D, Choquet D, Meunier FA (2016) Botulinum neurotoxin type-A enters a non-recycling pool of synaptic vesicles. Sci Rep 6:19654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes R, Whaler BC (1962) Influence of nerve-ending activity and of drugs on the rate of paralysis of rat diaphragm preparations by cl. Botulinum type a toxin. J Physiol 160:221–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahn R, Scheller RH (2006) SNAREs--engines for membrane fusion. Nat Rev 7(9):631–643

    Article  CAS  Google Scholar 

  • Lacy DB, Tepp W, Cohen AC, DasGupta BR, Stevens RC (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol 5(10):898–902

    Article  CAS  PubMed  Google Scholar 

  • Lam KH, Jin R (2015) Architecture of the botulinum neurotoxin complex: a molecular machine for protection and delivery. Curr Opin Struct Biol 31:89–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matak I, Bach-Rojecky L, Filipovic B, Lackovic Z (2011) Behavioral and immunohistochemical evidence for central antinociceptive activity of botulinum toxin A. Neuroscience 186:201–207

    Article  CAS  PubMed  Google Scholar 

  • Mazzocchio R, Caleo M (2015) More than at the neuromuscular synapse: actions of botulinum neurotoxin A in the central nervous system. Neuroscientist 21:44–61

    Article  PubMed  CAS  Google Scholar 

  • Miles GB, Hartley R, Todd AJ, Brownstone RM (2007) Spinal cholinergic interneurons regulate the excitability of motoneurons during locomotion. Proc Natl Acad Sci U S A 104(7):2448–2453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montal M (2010) Botulinum neurotoxin: a marvel of protein design. Annu Rev Biochem 79:591–617

    Article  CAS  PubMed  Google Scholar 

  • Montecucco C (1986) How do tetanus and botulinum toxins bind to neuronal membranes? Trends Biochem Sci 11:314–317

    Article  CAS  Google Scholar 

  • Montecucco C, Rasotto MB (2015) On botulinum neurotoxin variability. MBio 6:e02131–e02114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muraro L, Tosatto S, Motterlini L, Rossetto O, Montecucco C (2009) The N-terminal half of the receptor domain of botulinum neurotoxin A binds to microdomains of the plasma membrane. Biochem Biophys Res Commun 380(1):76–80

    Article  CAS  PubMed  Google Scholar 

  • Nuemket N, Tanaka Y, Tsukamoto K, Tsuji T, Nakamura K, Kozaki S, Yao M, Tanaka I (2011) Structural and mutational analyses of the receptor binding domain of botulinum D/C mosaic neurotoxin: insight into the ganglioside binding mechanism. Biochem Biophys Res Commun 411:433–439

    Article  CAS  PubMed  Google Scholar 

  • Pantano S, Montecucco C (2014) The blockade of the neurotransmitter release apparatus by botulinum neurotoxins. Cell Mol Life Sci 71:793–811

    Article  CAS  PubMed  Google Scholar 

  • Peck MW, Smith TJ, Anniballi F, Austin JW, Bano L, Bradshaw M, Cuervo P, Cheng LW, Derman Y, Dorner BG, Fisher A, Hill KK, Kalb SR, Korkeala H, Lindstrom M, Lista F, Luquez C, Mazuet C, Pirazzini M, Popoff MR, Rossetto O, Rummel A, Sesardic D, Singh BR, Stringer SC (2017) Historical perspectives and guidelines for botulinum neurotoxin subtype nomenclature. Toxins 9(1):38

    Article  PubMed Central  CAS  Google Scholar 

  • Pellet S, Tepp WH, Johnson EA (2019) Critical analysis of neuronal cell and the mouse bioassay for detection of botulinum neurotoxins. Toxins 11(12):E713. https://doi.org/10.3390/toxins11120713

    Article  CAS  Google Scholar 

  • Pirazzini M, Azarnia Tehran D, Zanetti G, Megighian A, Scorzeto M, Fillo S, Shone CC, Binz T, Rossetto O, Lista F et al (2014) Thioredoxin and its reductase are present on synaptic vesicles, and their inhibition prevents the paralysis induced by botulinum neurotoxins. Cell Rep 8:1870–1878

    Article  CAS  PubMed  Google Scholar 

  • Pirazzini M, Azarnia Tehran D, Leka O, Zanetti G, Rossetto O, Montecucco C (2016) On the translocation of Botulinum and tetanus neurotoxins across the membrane of acidic intracellular compartments. Biochim Biophys Acta 1858:467–474

    Article  CAS  PubMed  Google Scholar 

  • Pirazzini M, Rossetto O, Eleopra R, Montecucco C (2017) Botulinum neurotoxins: biology, pharmacology, and toxicology. Pharmacol Rev 69(2):200–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramírez-Jarquín UN, Tapia R (2018) Excitatory and inhibitory neuronal circuits in the spinal cord and their role in the control of motor neuron function and degeneration. ACS Chem Neurosci 9(2):211–216

    Article  PubMed  CAS  Google Scholar 

  • Restani L, Antonucci F, Gianfranceschi L, Rossi C, Rossetto O, Caleo M (2011) Evidence for anterograde transport and transcytosis of botulinum neurotoxin A (BoNT/A). J Neurosci 31(44):15650–15659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Restani L, Giribaldi F, Manich M, Bercsenyi K, Menendez G, Rossetto O, Caleo M, Schiavo G (2012) Botulinum neurotoxins A and E undergo retrograde axonal transport in primary motor neurons. PLoS Pathog 8(12):e1003087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossetto O, Montecucco C (2019) Tables of toxicity of Botulinum and tetanus neurotoxins. Toxins (Basel) 11(12):E686

    Article  CAS  Google Scholar 

  • Rossetto O, Schiavo G, Montecucco C, Poulain B, Deloye F, Lozzi L, Shone CC (1994) SNARE motif and neurotoxins. Nature 372(6505):415–416

    Article  CAS  PubMed  Google Scholar 

  • Rossetto O, Pirazzini M, Montecucco C (2014) Botulinum neurotoxins: genetic, structural and mechanistic insights. Nat Rev Microbiol 12(8):535–549

    Article  CAS  PubMed  Google Scholar 

  • Rossetto O, Pirazzini M, Lista F, Montecucco C (2019) The role of the single interchains disulfide bond in tetanus and botulinum neurotoxins and the development of antitetanus and antibotulism drugs. Cell Microbiol 21(11):e13037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rummel A (2013) Double receptor anchorage of botulinum neurotoxins accounts for their exquisite neurospecificity. Curr Top Microbiol Immunol 364:61–90

    CAS  PubMed  Google Scholar 

  • Simpson L (2013) The life history of a botulinum toxin molecule. Toxicon 68:40–59

    Article  CAS  PubMed  Google Scholar 

  • Sobel J (2005) Botulism. Clin Infect Dis 41(8):1167–1173

    Article  CAS  PubMed  Google Scholar 

  • Stern D, Weisemann J, Le Blanc A, von Berg L, Mahrhold S, Piesker J, Laue M, Luppa PB, Dorner MB, Dorner BG, Rummel A (2018) A lipid-binding loop of botulinum neurotoxin serotypes B, DC and G is an essential feature to confer their exquisite potency. PLoS Pathog 14(5):e1007048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sudhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323(5913):474–477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sugawara Y, Matsumura T, Takegahara Y, Jin Y, Tsukasaki Y, Takeichi M, Fujinaga Y (2010) Botulinum hemagglutinin disrupts the intercellular epithelial barrier by directly binding E-cadherin. J Cell Biol 189:691–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395(6700):347–353

    Article  CAS  PubMed  Google Scholar 

  • Swaminathan S (2011) Molecular structures and functional relationships in clostridial neurotoxins. FEBS J 278(23):4467–4485

    Article  CAS  PubMed  Google Scholar 

  • Zagoraiou L, Akay T, Martin JF, Brownstone RM, Jessell TM, Miles GB (2009) A cluster of cholinergic premotor interneurons modulates mouse locomotor activity. Neuron 64(5):645–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanetti G, Azarnia Tehran D, Pirazzini M, Binz T, Shone CC, Fillo S, Lista F, Rossetto O, Montecucco C (2015) Inhibition of botulinum neurotoxins interchain disulfide bond reduction prevents the peripheral neuroparalysis of botulism. Biochem Pharmacol 98(3):522–530

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Varnum SM (2012) The receptor binding domain of botulinum neurotoxin serotype C binds phosphoinositides. Biochimie 94:920–923

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Berntsson RP, Tepp WH, Tao L, Johnson EA, Stenmark P, Dong M (2017) Structural basis for the unique ganglioside and cell membrane recognition mechanism of botulinum neurotoxin DC. Nat Commun 8(1):1637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Work in the author’s laboratory is supported by University of Padova, CNR and the Ministry of Defence research project RI.PA.NE.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rossetto, O., Pirazzini, M., Fabris, F., Montecucco, C. (2020). Botulinum Neurotoxins: Mechanism of Action. In: Whitcup, S.M., Hallett, M. (eds) Botulinum Toxin Therapy. Handbook of Experimental Pharmacology, vol 263. Springer, Cham. https://doi.org/10.1007/164_2020_355

Download citation

Publish with us

Policies and ethics